

Nyrstar Hobart Triennial Public Environment Report 2022 – 2024

VERSION 3: SUBMITTED 10 APRIL 2025

TABLE OF CONTENTS

1.	Genera	al Manager's Letter of Introduction	4
2.	Nyrsta	r Operations Overview	5
_	.1.1	orate Overview Primary Products Nyrstar's Strategy	5
2.2		tar Hobart Smelter	
2.3	•	uction	
2.4	Raw	Materials	10
2.5	Seco	ondary Materials	10
2.6	Site I	Products and their Uses	13
2.7	The I	Production Process	14
2.8	Envir	onmental Procedural or Process Changes	15
3.	Enviro	nmental Management System	16
3.1	Intro	duction and Overview	16
3.2	Envir	ronment Policy	17
3.3	Lead	lership	19
3	3.4.1 3.4.2	ning Environmental Aspects & Impacts Environmental Objectives and Targets Legal Requirements	19 19
3.5 3	Imple 5.5.1 l	ementation and Operation Environmental Training Communications	22 22
	i.6.1 l	cking Monitoring and Measurement	24
3.7	Envir	ronmental Compliance	27
3.8	Sum	mary of Fulfilment of 2022–24 Environmental Objectives	28
4.	Monito	oring Programs	32
4	.1.1 l .1.2 <i>i</i>	ospheric Emissions Point Source Stack Emissions Ambient Sulphur Dioxide Ambient Particulate Matter	32 42
4 4	Site V 2.2.1 2.2.2	Water Management Process Water Potable, Reused and Recycled Water Consumption Stormwater Groundwater	
	.3.1	eiving Waters Water Quality Monitoring	106

nentally Hazardous Materials14
14
14-
14
14
24

1. GENERAL MANAGER'S LETTER OF INTRODUCTION

It is my pleasure to present Nyrstar Hobart's Triennial Public Environmental Report. The contents of this report represent the environmental performance and work conducted at the site during the reporting period.

This Triennial Public Environment Report is a summary of Nyrstar Hobart's environmental activities for the period 1 January 2022 to 31 December 2024. It compares environmental performance against commitments and regulatory obligations, and reports on monitoring progress particularly in the areas of air, water, land and noise in the local community.

Our aim is to minimise the environmental impact of both our production processes and our products and to conduct our operations in compliance with all relevant environmental regulatory instruments. The environmental challenges posed by the site are not insignificant. Smelting operations over the past 108 years have resulted in

contamination of soil and groundwater, accumulated waste stockpiles, and ecosystem impacts on the Derwent Estuary. However, Nyrstar Hobart acknowledges and accepts these challenges and has made significant and increasingly rapid progress in addressing these issues.

The reporting period saw a continued focus on reducing fugitive dust and consequently lead in air at the site. Many improvements were implemented during the reporting period, including the commissioning of a new baghouse in the Casting Department, further expanding the sprinkler system network, installation of new real-time dust monitors and ongoing infrastructure and housekeeping improvements across the site. Whilst the data indicates these improvements are having a positive impact, this will continue to be a significant focus for the site throughout the coming years.

A number of noise mitigation projects were implemented in the Roast Department in 2024 to reduce the risk of nuisance noise in the community. Works included installation of a new silencer on one of the primary steam vents, which achieved a significant reduction in intermittent steam venting noise from the Roast.

Works commenced on the New Cellhouse project, which involved the management of excavation spoil generated from the construction of a new major roadway. This process was well-managed, with minimal contaminated material required off-site disposal. The majority of the excavation spoil was re-used on the site, creating new laydown space.

In 2023, and again in 2024, the site achieved third-party verification of recycled content in finished market metal zinc. The Nyrstar Hobart zinc products contain a minimum of 20% recycled content. A Life Cycle Analysis for each of the zinc smelters in the Nyrstar Group was completed by an external consulting group in 2024. This analysis revealed that Nyrstar Hobart has the second lowest carbon emissions per tonne of market metal zinc in the group, achieved largely through the access to Tasmanian hydro-electricity. These credentials are becoming increasingly important to customers, and the end-users of the zinc produced at the Hobart smelter.

Over the past 3 years (the reporting period), eight instances of non-compliance with conditions in the site's environmental permit occurred. All were thoroughly investigated and actions to resolve the issues have been completed, or are still in progress.

Overall, 2022 - 2024 has presented some environmental management challenges, however the triennial period has also seen a number of key objectives of site environmental management plans completed, particularly in improved management of air emissions and waste. We will continue to focus on these, and other key areas of environmental management in 2025-2027.

If you have any comments regarding this review, please contact our Environment Principal, Kylie Veale on (03) 6278 4604.

Todd Milne

GENERAL MANAGER

2. NYRSTAR OPERATIONS OVERVIEW

2.1 Corporate Overview

Nyrstar is a global multi-metals business with market leading positions in zinc and lead, and growing positions in other base and precious metals, such as indium, copper, gold and silver. Nyrstar has seven smelters, and two mining operations located in Europe, the Americas and Australia and employ approximately 4,000 people.

In July 2019, Nyrstar's operational business became majority owned by Trafigura, one of the world's leading independent commodity trading companies.

2.1.1 Primary Products

Zinc

A global leader in zinc, Nyrstar is the world's second largest zinc smelting company based on production volumes. Nyrstar produces zinc in concentrate from its mining operations and a variety of refined market zinc products including special high grade zinc, zinc galvanising alloys, and zinc die-casting alloys as an outcome of its zinc smelting process. Zinc has diverse applications and uses, from construction and infrastructure, to transport, industrial machinery, communications, electronics and consumer products. This makes it an essential and highly sought-after resource.

Lead

Nyrstar has a market leading position in lead, producing a number of refined products for market. This includes lead concentrate and refined market lead (99.97% and 99.99%), as well as lead-antimony alloys, copperised-lead alloys, calcium lead alloys and calcium tin-lead alloys. Lead's primary usage is for the production of batteries. More than 80% of world production goes into the manufacture of lead acid batteries which play an important part in the starter mechanism for automobiles. Lead is also used in a wide variety of products found in and around our homes including paint, ceramics, pipes and plumbing materials, solders, gasoline and batteries. Other end uses for lead include underwater cable sheathing, glassware, solder and roof sheeting.

Indium

Indium is a minor component in zinc sulphide ores. It is a rare, silver, metallic element. The production of indium at Nyrstar Auby's indium recovery plant is 100% carbon dioxide free. Global demand for indium has increased substantially in recent years. It is considered a technology-critical element. Indium is most notably used in the semiconductor industry, in low-melting-point metal alloys such as solders, in soft-metal high-vacuum seals, and in the production of transparent conductive coatings of indium tin oxide on glass, such as flat panel television and video displays.

Copper

Nyrstar produces concentrated copper by-products. Copper is predominantly used in building construction. Other significant end-use markets include electrical and electronic products, transportation equipment, consumer products and industrial machinery and equipment.

Gold

Gold is produced in concentrate from our mining operations. Nyrstar also recovers gold in the lead refining process.

Silver

Silver is produced in concentrate from our mining operations. Nyrstar also recovers silver from the lead refining process as a silver doré and as a by-product from the zinc refining process into various leach products.

Sulphuric Acid

Sulphuric acid is a vital commodity in any modern national economy. It is a key substance in the chemical industry. It is most commonly used in the production of fertiliser, but is also important in mineral processing, oil refining, wastewater processing, and chemical synthesis.

It has a wide range of end applications including domestic acidic drain cleaners, as an electrolyte in lead-acid batteries, in dehydrating a compound, and in various cleaning agents. The chemical is also an essential ingredient in the production of fibres, paint, rubber, plastics, steel and medicines.

2.1.2 Nyrstar's Strategy

Nyrstar's management strategy is aimed at positioning the business for a sustainable future as a leading global multi-metals processing business. Through its deep market insight and unique processing capabilities, Nyrstar aims to generate superior returns by extracting the maximum value inherent in the mineral resources and byproducts it processes.

Accordingly, Nyrstar has developed a coordinated approach to redeveloping and operating its asset portfolio to optimise the concentrate feed into its smelters, maximise minor and precious metal extraction, and enhance the margins of its end-product mix.

To realise its strategy, management has determined the following strategic priorities

- Maintain Nyrstar's strong safety performance by improving visible safety leadership
- · Optimise the zinc smelters to deliver their full potential, underpinned by operational stability
- Ramp up the Port Pirie Redevelopment to deliver the guided earnings uplift
- Optimise the North American zinc mines to deliver their full potential

2.2 Nyrstar Hobart Smelter

Nyrstar Hobart (NH) is a large scale zinc smelter located on the western bank of the Derwent Estuary in Hobart, Tasmania (Figure 2.1). The Hobart site has operated for 108 years, celebrating its centenary in 2017. The site is one of the world's largest and most efficient zinc producers, with a production capacity of up to 280,000 tonnes of marketable metal. The facility uses the Roast, Leach, Electrowinning (RLE) process for zinc production and is closely integrated with the Nyrstar Port Pirie multi-metals smelter, which processes a number of Hobart's leach by-products.

The Hobart smelter is focused on high value added products for export to growing markets in Asia. The site has been significantly upgraded and modernised over the last 40 years, with improvements such as:

- The modernisation of gas purification and acid plants in the roasting facility;
- The modernisation of the leaching and purification processes;
- The introduction of mechanised zinc stripping in electrolysis and;
- The automation of the casting plant.

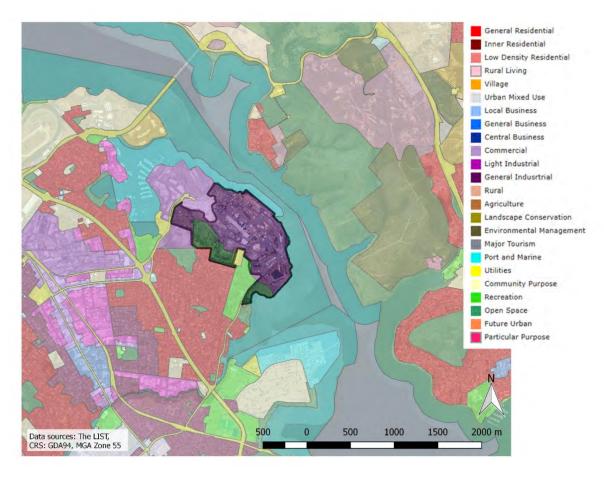
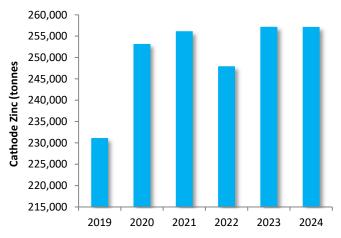
These major capital works and operational improvements have increased the plant's annual operating capacity from approximately 170,000 tonnes of zinc in 1977 to approximately 260,000 tonnes today. Hobart's key products are special high grade zinc, die cast alloys (branded 'EZDA') and continuous galvanising grade alloys. The site also produces by-products of cadmium, copper sulphate, paragoethite, lead sulphate leach concentrate and sulphuric acid.

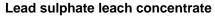
NH owns approximately 120 ha of land on the western shore and 100 ha on the eastern shore of the Derwent Estuary, maintaining substantial buffer zones between the site and surrounding residential community.

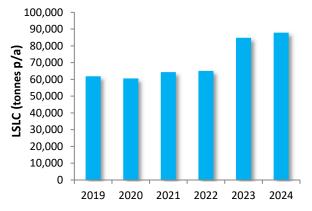
The smelter is partially surrounded by a range of land uses, including General Residential, General Industrial, Utilities, Recreation, Open Space, Port and Marine, and Landscape Conservation. The NH operational site is shown in Figure 2.1, with the Planning Scheme information for NH and surrounding areas shown in Figure 2.2.

Figure 2-1 Nyrstar Hobart operational site location

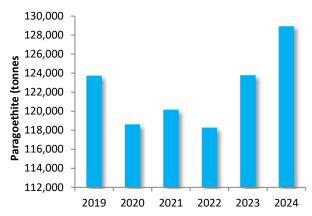
Hobart city is built around the Derwent Estuary on a coastal plain, with the majority of the population within a 10 km radius of the CBD. The climate is cool and temperate. The dominant wind direction is north-westerly, though airflows are strongly modified by the complex hill and mountain topography surrounding the city. The regional geology is dominated by Permian to Triassic sedimentary rock intruded by Jurassic dolerite. Hobart experiences variable rainfall over a large catchment, with the majority of potable water sourced from highland catchments that yield high quality water. NH operates within the management catchment of Glenorchy City Council.

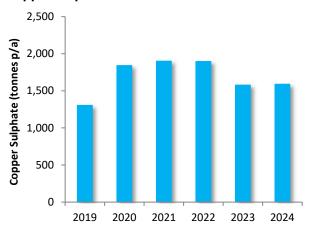




Figure 2-2 Land Use (as per the Tasmanian Planning Scheme) for NH and surrounding areas


2.3 Production

Annual production rates for zinc and other major NH products for the period 1 January 2019 to 31 December 2024 are shown below.


Cathode zinc production



Paragoethite

Copper sulphate

Cadmium

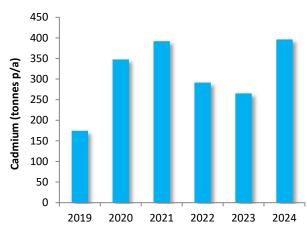


Figure 2-3 Product and by-product production 2019 –2024

2.4 Raw Materials

The major raw material used for site operations is zinc concentrate, made from the milling and beneficiation of mined zinc sulphide (sphalerite) ore. Concentrates arrive by ship and are unloaded at the NH wharf, on the eastern frontage of the smelter, then stockpiled in a closed concentrates shed prior to use. The concentrates shed is a purpose-built facility, constructed in 1997, to reduce dust emissions from stockpiling concentrates and other by-products.

NH experiences some variability in the yearly total of roasted zinc concentrates, with this variability primarily driven by plant maintenance requirements, and plant performance (Figure 2.4). During 2022 – 2024, the majority of concentrates were sourced from Glencore MIM (Mt Isa Mine) in northwest Queensland, Min Metals Group (MMG) Rosebery mine in the west coast region of Tasmania, and Perilya Broken Hill mine. The proportion of feed concentrates from each of the mines for the reporting period is shown in Figure 2.5.

2.5 Secondary Materials

Another significant source of feed material to the site are zinc oxides, and recycled zinc concentrates produced from zinc mine tailings. The majority of the zinc oxide is sourced from the Nyrstar Port Pirie smelter. This material is processed at NH on an ongoing basis with an average volume of 60,776 tonnes processed per annum over the reporting period. These secondary materials make up in excess of 20% of NH's feed book.

In 2023, NH published a Self-Declared Environmental Claim, in accordance with ISO 14021:2016 Environmental labels and declarations – Self-declared environmental claims (Type II environmental labelling), declaring that NH zinc products conatin a minimum of 20% recycled content. This claim was verified by an external auditing body in 2023, and again in 2024 (Figure 2-6). NH will continue to track recycled content of their zinc products on an ongoing basis, seeking third-party verification on an annual basis.

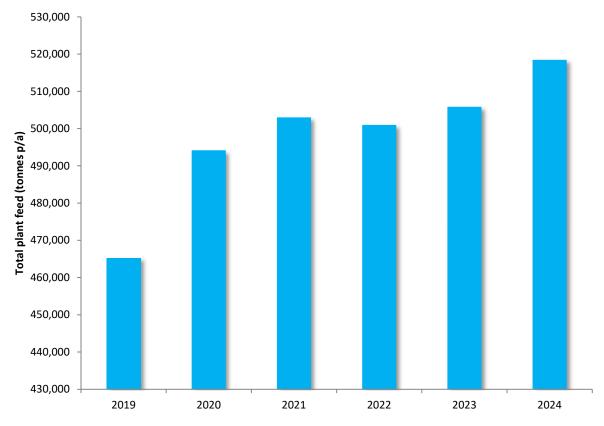


Figure 2-4 Total plant feed

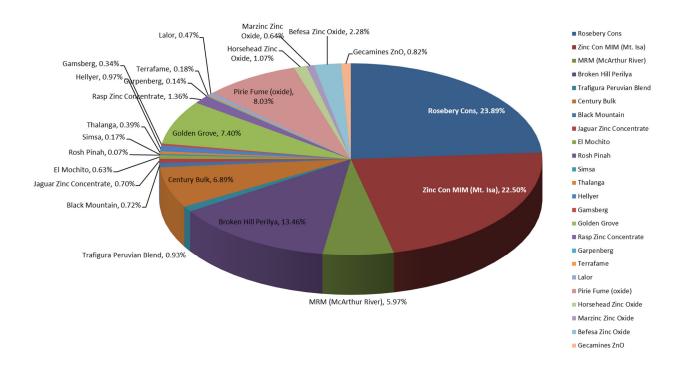


Figure 2-5 Proportion of feed materials by source 2022 – 2024

Sustainability Assurance: AU/SS/240427

Recycled Content Verification Statement

This Statement is issued to

Nyrstar Hobart Pty Ltd 300 Risdon Road, Lutana, Tasmania 7009, Australia

for the product(s): Continuous Galvanizing Grade (CGG) and Special High Grade (SHG) Zinc, Zinc Die Casting Alloy 3 (EZDA 3), and Zinc Die Casting Alloy 5 (EZDA 5).

The claimed recycled zinc (Zn) used for above mentioned product(s) has been verified by SGS as complying with the definition of recycled materials as Pre-consumer or Post-consumer in ISO 14021:2016. The recycled content(s) of above-mentioned product(s) have been calculated according to ISO 14021:2016 and verified by SGS as

Continuous Galvanizing Grade (CGG) and Special High Grade (SHG) Zinc, Zinc Die Casting Alloy 3 (EZDA 3), and Zinc Die Casting Alloy 5 (EZDA 5): Minimum 20%, based on the annual quantity of material used.

The verification does not address product quality or other legal compliance and is subject to continued satisfactory and consistent practices.

This statement is valid from 26 October 2024 until 25 October 2025 and remains valid subject to satisfactory surveillance audits.

BNEALLO

Authorised by Sham McAulley General Manager

SGS Australia Pty Ltd 10/585 Blackburn Road, Notting Hill VIC 3168, Australia

t (61-3) 9574 3200 - www.sgs.com

This document is an authentic electronic certificate for Client' business purposes use only. Printed version of the electronic certificate are permitted and will be considered as a copy. This document is issued by the Company subject to SGS General Conditions of certification services available on Terms and Conditions | SGS. Attention is drawn to the limitation of liability, indemnification and jurisdictional clauses contained therein. This document is copyright protected and any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful.

Page 1/1

Figure 2-6 Nyrstar Hobart Recycled Content Verification Statement

2.6 Site Products and their Uses

NH produces a range of premium products, including value-added alloys. Zinc is alloyed with other metals such as aluminium and manganese to produce targeted products.

Zinc provides excellent corrosion resistance to iron and steel. It is also a relatively hard metal with a low melting point, making it suitable for die casting, but still soft enough to be formed, rolled, or extruded.

Zinc is found in materials in construction and infrastructure, transport and industrial machinery, and communications and electronics, to consumer products and human health applications.

The major uses for NH's zinc products are as follows:

- **Galvanising** zinc's most important use is in protecting steel from corrosion. A thin layer of zinc protects the underlying steel, extending the life of motor vehicles, bridges, fences, buildings and a wide range of other products for many years. Zinc is also used as sacrificial anodes attached to ships' hulls, pipelines and underwater structures to prevent corrosion.
- Die Casting one of the fastest growing uses of zinc is for the production of die-casting alloy the shortest distance between raw material and finished product. Because of the quality of these zinc alloys, complex precision parts are mass-produced for products as diverse as bathroom fittings, zippers, automobile parts, vacuum cleaners, refrigerators, carburettors, and scale model vehicles and other toys.
- **Brass and Bronze** a wide variety of brasses and bronzes are produced, which include zinc as an essential alloying ingredient. Modern uses include high purity zinc alloys used to purify water by removing chlorine, hydrogen sulphide, iron and other metals.
- Chemicals in the form of various chemicals, zinc is essential in the manufacture of plastics, ceramics, medicinal products, paints, motor oil additives, soldering fluxes and many other items. Zinc is also used in the manufacture of a number of chemicals, most frequently zinc oxide, zinc sulphate and zinc chloride. These products are used in fertiliser, pharmaceuticals, paper, rubber, rayon, wood and other industries that require high quality zinc.

NH's other products include:

- **Sulphuric Acid** NH recover sulphur in our production processes to produce a significant quantity of high purity sulphuric acid. Sulphuric acid is a vital commodity in any modern economy. In fact it is so widely used that its consumption rate like steel production or electricity power is a good barometer of a nation's prosperity. It is used either directly or indirectly in almost every industry. It is an essential ingredient in the production of fertilisers, fibres, paint, rubber, plastics, steel, detergent and medicines, and can even be found, perhaps surprisingly, in many beers and soft drinks. One of its more specialised uses is in the production of high strength fibres for use in bulletproof vests and yacht sails.
- **Cadmium** is a soft, bluish-white, ductile metallic element that occurs in association with zinc ores. Its main use is in the production of nickel cadmium batteries.

2.7 The Production Process

The production process at NH is shown in Figure 2-7.

The sequences of steps in the zinc production at NH are as follows:

- Roasting of zinc concentrate to calcine to make it more readily soluble for further purification. A by-product of this step is sulphuric acid.
- Leaching of the calcine in a five stage counter-current process, using the spent electrolyte from the electrolysis step. This produces an impure zinc sulphate solution and leaves a lead-silver product. Iron is also removed as paragoethite, which is normally further treated at Nyrstar's lead smelter at Port Pirie, South Australia.
- **Purification** of the zinc sulphate solution, removing metallic impurities by their displacement through the addition of zinc dust. Copper is recovered as a copper sulphate by-product, and cadmium metal is also recovered for sale.
- **Electrolysis** of the purified solution, whereby it is depleted of a portion of its zinc and regenerates sulphuric acid. This produces cathode zinc and spent electrolyte, which is recycled to the leaching stage.
- Casting of cathode zinc into slabs and blocks, and the production of alloys.

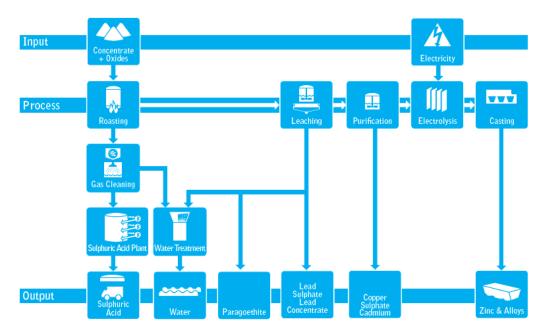


Figure 2-7 Production process

2.8 Environmental Procedural or Process Changes

NH implemented a number of process changes during the reporting period. These changes have been implemented, and managed in such a way that they have not resulted in a material difference to site emissions, nor is it considered that they have the potential to cause environmental harm.

- Commissioning of a new baghouse in the Casting Department as part of the dross cooling and handling project, a second baghouse was installed on the dross plant in the Casting Department. The improvements to the dross plant have reduced the risk of fugitive dust emissions.
- Installation of on-line particulate monitors in the Paragoethite Dryer baghouse, the Anode Casting scrubber stack, and the Roaster baghouse. Data collected from the monitors is trended in real-time and enables ongoing assessment of particulate matter exiting the systems and improved early detection of any performance anomalies.
- Manufacturing of zinc-antimony alloy. In order to meet market requirements, NH manufactured a trial parcel of zinc-antimony alloy in 2023. The trial was completed successfully.
- New Cellhouse re-use of excavation spoil. Earthworks for the New Cellhouse project commenced in 2023. NH are re-using the excavation spoil on the site in order to level out areas to create additional laydown space. This has minimised the volume of soil requiring off-site disposal.
- Replacement of chlorine gas system with sodium hypochlorite. Chlorine has historically been used in the acid plant, to control the mercury content in the sulphuric acid. In 2023, chlorine was replaced with sodium hypochlorite, eliminating the risks associated with the storage and use of chlorine gas.
- Trial of sodium sulphide addition in the on-site effluent treatment plant. The purpose of the trial was to assess the potential of increasing the deportment of magnesium in effluent while otherwise maintaining effluent quality.
- Reduction in noise emissions from the Roasting plant. A number of noise mitigation projects were
 implemented in the Roast Department in 2024 to reduce the risk of nuisance noise in the community.
 Works included installation of a new silencer on one of the primary steam vents, installation of silencers
 on two of the steam vents associated with a steam turbine, and complete lagging and cladding of the
 start-up scrubber stack to reduce tonal noise caused by large volumes of air flowing through the stack.
- Adoption of re-usable containers for mercury filter cake handling, significantly reducing the volume of single-use high-density polyethylene containers used at the site for handing and transport of mercury filter cake.

3. ENVIRONMENTAL MANAGEMENT SYSTEM

3.1 Introduction and Overview

NH has integrated management of multiple systems into a one-business system covering the areas of Safety, Health, Environment and Quality (SHEQ). Specifically the SHEQ Management System has been developed to encompass:

- · Strategic planning;
- · Asset management;
- Environmental management;
- Occupational health and safety;
- Human resource management; and
- Quality management.

The objective of the management system is to share the responsibility for management of SHEQ at all levels in the organisation and to ensure that every individual is aware of and accountable for safety, health, environment and quality management issues in their area of influence.

NH has maintained accreditation for the international standards ISO 14001:2015 – Environmental Management Systems, ISO 9001:2015 – Quality Management System and has achieved accreditation again ISO 45001:2018 – Occupational Health and Safety Management System.

The site's Integrated Management System is internally evaluated against the above standards by applying specific audits and checklists, which are scheduled on a rotational basis. An external certified auditing body conducts annual external surveillance and triennial recertification audits.

The site has a specific Environmental Management System (EMS) that forms part of the Integrated Management System. The EMS is a step-by-step approach to environmental management that ensures environmental aspects are not overlooked, tasks are completed and checked, provision is made for changes, and response procedures are established for emergencies. An EMS also provides a process that is applicable across the different levels of the organisation to develop objectives and targets and review progress against those targets.

The NH EMS is applicable to all areas of the organisation's processes.

Additional to the aforementioned accreditations, in September 2024, Nyrstar Hobart achieved The Zinc Mark certification meeting best in class requirements for responsible production practices (Figure 3-1).

The Zinc Mark is achieved through The Copper Mark assurance framework and aims to promote responsible production practices along the value chains of the covered minerals.

To receive The Zinc Mark, operations are assessed and independently verified against 32 responsible production criteria including greenhouse gas emissions, community health and safety, respect for Indigenous rights and business integrity and confirmed to meet the required performance threshold.

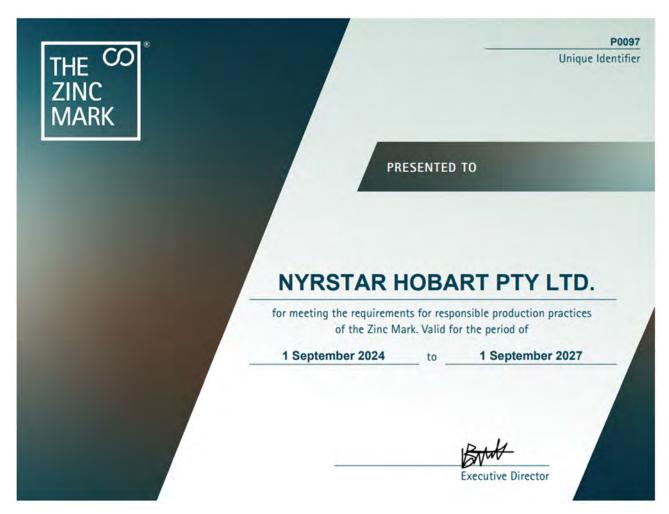


Figure 3-1 Nyrstar Hobart Zinc Mark Accreditation

3.2 Environment Policy

The Nyrstar Environment Policy, as shown in Figure 3-2, is specifically designed to represent all Nyrstar operations. This policy was originally developed in Hobart with representatives from all Nyrstar sites, including regional and corporate offices. The policy was written collaboratively and consultatively with the aim of ensuring it reflected Nyrstar's values and received Board approval.

The Policy comprises three sections; 1 'Overview' which provides the business context, 2 'Intent' which outlines what Nyrstar hopes to achieve with respect to the Policy, and 3 'Action Plan' or 'Bullet Point Actions' to outline how Nyrstar plans to fulfil the commitments made in the policy. This policy is the cornerstone of our EMS. It drives the goals, objectives and strategies we use to achieve targets against which we measure our performance.

Nyrstar Environment Policy Statement

We are a global leader in mining, metals processing and recycling with operations across multiple cultures and continents. Our metal products meet society's needs worldwide and are inherently recyclable. We are located within communities who have expectations of us, which we must meet.

We operate our business in an environmentally responsible way. Our aim is to prevent harm to the environment and the community. We will build trust with our key stakeholders by meeting our commitments and maintaining open and honest communications.

To achieve this, we will:

- Minimise the environmental impact of our operations by applying leading practice, innovation and sound science.
- Continually improve our performance through the identification and management of environmental risks and establishment of measurable objectives and targets.
- Comply with legal obligations as a minimum and meet the requirements of our voluntary
- Engage with our stakeholders, understand and respond to their expectations and effectively communicate our environmental performance.
- ✓ Provide material stewardship through efficient and responsible procurement, transport and use of resources. Minimize waste and expand recycling options by following the waste management hierarchy for hazardous, non-hazardous and inert wastes.
- ✓ Implement risk-based freshwater management measures in collaboration with relevant stakeholders to minimise impact on other water users and on fauna and flora in the catchment area of each of our facilities.
- Ensure that sufficient information and resources are available to achieve greenhouse gas. emission reduction objectives and energy targets, and that design activities consider energy performance improvement.
- Assess and manage our operational impacts on biodiversity and explore initiatives to protect and enhance natural ecosystems.
- Recognize the environmental impact from past operations and address legacy issues.

 Develop a culture of environmental ownership through integration of business goals and by increased awareness, skills and competency of our people.

We believe that these commitments provide the foundation for a sustainable business.

Guido Janssen - Chief Executive Officer April 2024

Figure 3-2 Nyrstar Environment Policy Statement

3.3 Leadership

The NH senior management team demonstrates leadership and commitment with respect to the EMS through a number of channels. These include but are not limited to:

- The development of an Environmental Policy (Figure 3-2).
- Establishing environmental objectives and tracking of those objectives through internal NH reporting, and reporting to the Nyrstar Corporate group.
- Establishment of a specialist environment team, whose responsibility includes the continual improvement of the environmental management system.
- Ensuring the integration of the environmental management system requirements into the business process through the implementation of tools, systems, equipment, training etc. Examples include; risk assessment tools, emergency management tools, environmental incident and hazard reporting tools, and a document management system.
- Assigning the responsibility and authority for the EMS to the SHEQ Manager and the Environment Principal through specific position descriptions.

3.4 Planning

3.4.1 Environmental Aspects & Impacts

NH holds a register of environmental aspects and impacts for all issues related to current and historical activities. The register fulfils requirements for identification of aspects and impacts as well as risk, and has been verified through external audit as part of ISO14001:2015 certification. This register is reviewed on a continual basis as identified risk profiles change and when new risks are identified. The risk register is held in the site's Risk Information Management System (RIMS) database, which is routinely reviewed to ensure the currency of information.

3.4.2 Environmental Objectives and Targets

Nyrstar's key environmental objective is to 'operate our business in an environmentally responsible way by preventing harm to the environment and the community'.

NH environmental objectives, targets and programs are determined through the following means:

- NH significant environmental aspects:
- · Nyrstar Corporate Environmental Policy; and
- The Permit issued by EPA Tasmania.

The environmental objectives and targets are developed each year as part of the strategic planning process. NH reviews the site's environmental performance, including progress against the environmental objectives and targets on an ongoing basis and reports this information to the Tasmanian EPA on an annual basis via an Annual Environment Review (AER).

Objectives as defined through the aforementioned documents are assigned at the commencement of the NH financial year to relevant personnel. Actions associated with achieving environmental objectives may also be assigned to personnel as an action in the RIMS database.

In 2022 objectives were set that would see NH work towards this strategy. A summary of progress against those objectives is included in Table 3-6.

New objectives have been developed for the coming three year period and are included in Table 3-1. Progress against these objectives will be reported in each AER, and in the 2025-2027 Public Environment Report.

As strategic planning is conducted on an annual basis, there may be some changes/additions to this three year plan. These will be clearly outlined in subsequent annual reports.

Table 3-1 Environmental objectives 2025–2027

Waste and By-products

- Reduce existing stockpiles of process and non-process wastes by seeking out new and innovative recycling and stabilisation technologies.
- Develop outlets for future waste products to prevent stockpiling.

Energy Use and Carbon Efficiency

- Sustain third-party verification of recycled zinc claim
- Meet 'Zinc Mark' certification obligations/commitments

Soil and Groundwater

- Continued implementation of the site's Groundwater Management Strategy, including:
 - » Progressing with the assessment of hydrocarbon contamination across the site.
 - » Work towards hydrogeological isolation of the site via improving existing groundwater extraction systems and exploring opportunities for new systems.
 - » Support for repairs to bunds that present a high risk to the environment due to disrepair, including inspections and advice on priorities for repair.
- Continue to review groundwater data as it's collected to assess trends in metal concentrations.
- Undertake an annual review of the groundwater monitoring program to ensure it continues to provide the necessary data to inform decisions.

Water

- Increase site use of the recycled water produced through the site's Reverse Osmosis plant and reduce potable water consumption 3-year average by 5% each year.
- Focus on maintaining storage capacity within the site's stormwater and contaminated water ponds through progressive recovery of accumulated solids.

Air Emissions

Implement the Lead Emissions Control Plan in order to reduce the concentration of lead in air.

Stakeholder Engagement

 Meet all self-imposed obligations for community engagement, including community meetings and community newsletters.

3.4.3 Legal Requirements

The NH Environmental Management System (EMS), certified to ISO 14001:2015, defines the process for managing the site's compliance program. Key components of the management system that assist in the maintaining our strong compliance record are:

- A procedure outlining the identification and management of site-specific legal and other environmental obligations.
- A consents register detailing all of the environmental permits and other consents with environmental requirements, that have been specifically issued to the site.
- The principal environmental obligation for NH operations is the *Environmental Management and Pollution and Control Act 1994* (EMPCA). Tasmania enacts the requirements under EMPCA through a

suite of legislation which forms the framework for Tasmania's resource management and planning systems, comprising the following:

- » Land Use Planning and Approvals Act 1993;
- » Resource Planning and Development Commission Act 1997;
- » Resource Management and Planning Appeal Tribunal Act 1993;
- » State Policies and Projects Act 1993;
- » Environmental Management and Pollution Control Act 1994;
- » Historic Cultural Heritage Act 1995; and
- » Major Infrastructure Development Approvals Act 1999.

3.4.3.1 Permit

NH operates under Permit (former Licence to Operate Scheduled Premises) No. 3314, as varied by Environment Protection Notice No. 7043/5 and 7043/6 (hereafter referred to as 'The Permit' or 'The Permit as varied') issued by the Environment Protection Authority (EPA) Tasmania under the EMPCA. The Permit as varied is included as Appendix 3 – The Permit as Varied.

3.4.3.2 Proceedings and Infringements

NH did not incur any of the following during the reporting period 01/01/22 to 31/12/24:

- Proceedings (prosecutions) issued under Tasmanian or Commonwealth environmental legislation, or the environmental provisions of other legislation; or
- Enforcement action taken under any other Tasmanian or Commonwealth environmental legislation, the environmental provisions of other legislation, or the environmental provision of council by-laws; or
- Infringement notices issued under the EMPCA.

3.4.3.3 Other Regulatory Instruments Relevant to Operations[†]

- Tasmanian policies under the State Policies and Projects Act 1993;
- Tasmanian Coastal Policy 1996;
- State Policy on Water Quality Management 1997;
- Environmental Management and Pollution Control Regulations;
- Australian Energy Efficiency Opportunities Act, 2006;
- Australian National Greenhouse & Energy Reporting System Act 2007 (NGERS);
- Clean Energy Legislation (Carbon Tax Repeal) Act 2014 (superseding the Clean Energy Act 2011);
- Environment Protection and Biodiversity Conservation Act 1999;
- Hazardous Waste (Regulation of Exports and Imports) Act 1989;
- National Environment Protection Measures (NEPMs) are automatically adopted as State Policies under section 12A of the State Policies and Projects Act 1993 and are administered by the EPA. Relevant NEPMs to the operation include:

- » National Environment Protection (Air Toxics) Measure 2004;
- » National Environment Protection (Ambient Air Quality) Measure 1998;
- » National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended 2013;
- » National Environment Protection (Diesel Vehicle Emissions) Measure 2001;
- » National Environment Protection (Movement of Controlled Waste between States and Territories) Measure 1998;
- » National Environment Protection (National Pollutant Inventory) Measure 1998; and
- » National Environment Protection (Used Packaging Materials) Measure 2011.
- † This list represents a sample of key regulatory mechanisms relevant to operations at NH, however is not exhaustive.

3.4.3.4 Voluntary Agreements and Other Requirements

- Australian Industrial Chemicals Introduction Scheme (AICIS);
- International Zinc Association (IZA) Sustainability Charter;
- International Lead Association 'Lead Action 21' Charter.

3.5 Implementation and Operation

3.5.1 Environmental Training

Competence, training and awareness are critical to the continued implementation of the EMS as the framework for continual improvement. While accepting that the highest responsibility for the EMS lies with the Environment Department, NH uses a number of tools to provide basic understanding to the broader workforce and key users. The following tools and forums are used to propagate awareness of environmental issues at NH and the EMS and its requirements, particularly with respect to legal obligations:

- Site Induction covers the general hazards associated with the plant, site policies, systems of work and
 other requirements. Environmentally it clarifies responsibilities with respect to environmental incident
 reporting, materials movement authority, hazardous chemicals, waste management, spill response and
 general care for the environment.
- Departmental Inductions personnel working in operating departments must also undertake a specific departmental induction, which provides more detailed information about hazards in that respective area of the plant, and also informs personnel of specific environmental aspects and impacts associated with that section of the process. A competency test is also conducted as part of these inductions.
- Contractor Site Work Conditions contractors who work on site must comply with documented standard site work conditions known as SC1. A section of these conditions deal with contractor's obligations in regard to site environmental requirements such as the Environmental Policy, EMS, waste management, materials movement, emissions and incident reporting.
- Emergency Response Officers (EROs) undergo a specific environmental training program to enable them to appropriately respond to incidents that may have an environmental impact. ERO's are also specifically trained to conduct environmental inspections for material leaving site under the Materials Movement Authorisation Procedure.
- Training and Assessment Guides a process by which employees / contractors are deemed competent
 in all aspects of the required duty of work through a combination of on-the-job training, verification of
 learning outcomes, completion of an assessment and demonstration of a sound understanding of
 operating procedures, that apply to their tasks.
- Standard Operating Procedures of most critical importance for current environmental performance is
 the inclusion of environmental aspects into Standard Operating Procedures (SOP) where impacts on the
 environment could result. This ensures that operators are aware of the critical operating parameters for
 the plant they are operating and the impact of operating outside of those parameters. This is most critical

for Roast operations where loss of plant stability could result in SO₂ emissions, and at the Effluent Treatment Plant where failure to follow SOPs could result in discharge of contaminated effluent to the Derwent Estuary.

• Job Safety and Environment Analysis – is used to identify the jobs steps, associated safety and environment hazards and mitigating controls for work where a SOP has not been developed and the task risk rating is greater than low or involves Defined Hazardous Work (DHW).

3.5.2 Communications

NH has implemented a number of internal environmental communication processes for the site.

Internal communications are carried out through the following means:

- Daily Reporting a RIMS report is circulated site wide to all NH email recipients, which covers the site's safety and environmental performance for the last 24 hours.
- Weekly Reporting management team review of significant environmental incidents through the weekly site report.
- 'The Feedbook' a monthly newsletter which communicates general information relating to site activities. Environmental information and initiatives are communicated as needed.
- Monthly reporting to the Management Team via the Monthly Performance Review meeting held by that group.

NH have well-established processes to facilitate external communication with key stakeholders, including neighbouring industry, local residents, interested community groups, government and regulatory agencies and customers. These include:

- Community Consultation Meetings NH is committed to hosting at least one meeting annually to provide a forum to update and engage local residents, general members of the public and other interested parties about our operations. This is an opportunity to share information about the important work taking place on site, promote discussion of relevant issues, disseminate general information on the broader business and receive direct feedback from our stakeholders.
- Community Notices Where a specific environmental issue warrants community notification NH produce and distribute this material to residents, as required.
- Annual Environmental Review (AER) NH produces an AER on an annual basis, and a Public Environment Report (PER) on a triennial basis. The AER and PER are submitted to the Tasmanian EPA and includes details of NH environmental objectives and targets and the site's progress towards meeting objectives and targets and annual environmental performance.
- Trafigura Sustainability Report Reports on the annual sustainability performance of the Trafigura group
 of companies, which includes Nyrstar mine and smelter sites.

In addition, NH uses a range of platforms and channels including social media to communicate with the local community, employing such tools as:

- The Nyrstar website for general information including environmental reports and information relating to the site's Major Hazard Facility status.
- Social media including a NH Facebook page and Nyrstar Australia LinkedIn page

A register of all community complaints received by the facility, along with follow-up investigations and actions, is maintained. Complaints received over the reporting period are summarised in Appendix 1 – Community Complaints 2022 – 2024.

Nyrstar Hobart proactively engages in community activities and, where appropriate, provides financial and inkind support for not-for-profit community groups and projects that align with its corporate values and objectives.

Every year, NH also provides support to the neighbouring New Town Bay Golf Club which is located close to its Lutana operations.

During the reporting period, NH was involved with and sponsored a number of events including the Annual Nyrstar Hobart Charity Golf Day, the Beaker Street Festival, University of Tasmania STEM Ball, Nyrstar Hobart's Annual Engineering Dinner, Hazell Bros Corporate Golf Day and The Mind Games.

2024 was the 30th Anniversary of the Annual Nyrstar Hobart Charity Golf Day held in March and it raised a record \$14,573. This was donated to Cancer Council Tasmania to help in their important work supporting people diagnosed with cancer through their treatment.

In 2024, Nyrstar Hobart was proud to again be a stage sponsor for The Mind Games, which is focused on raising money for workplace mental health research through the University of Tasmania's Menzies Institute for Medical Research. This event took place in May 2024 and helped raise \$60,000 for this worthy cause.

In 2023, NH became a member of 26TEN – Tasmania's campaign for adult literacy – joining a growing network of organisations and individuals working hard together to improve adult literacy and numeracy in Tasmania. This membership continued throughout 2024.

3.6 Checking

3.6.1 Monitoring and Measurement

NH conducts extensive environmental monitoring and measurement to:

- Ensure that smelting activities do not unduly impact upon the receiving environment and surrounding community.
- Assess compliance against the site's environmental permit.
- Track performance against the site's objectives and targets.
- Monitor the effectiveness of control and remedial actions taken.
- Fulfil other legal requirements such as National Pollutant Inventory and Derwent Estuary Program partnership.

Environmental monitoring programs are currently in place for groundwater, stormwater, effluent discharge (both to the Derwent Estuary and trade waste), receiving waters and sediments, stacks, ambient air quality, noise, process and non-process waste, and biota.

All monitoring and measurement is undertaken in accordance with the site's Standard Operating Procedures, designed to comply with Australian Standards.

Critical and non-critical monitoring equipment is calibrated and serviced in accordance with the manufacturers' recommendations and relevant Australian Standards. The SAP electronic business system is used to manage the ongoing preventative and special maintenance requirements of critical environmental monitoring equipment. Recurring service requests are generated by this system to notify relevant personnel of calibration testing requirements. Specific controls are also invoked for items listed on the critical equipment / instrumentation register to ensure completion of calibration and maintenance.

3.6.2 ISO 14001 Certification

NH is audited triennially for recertification against ISO 14001:2015 (Environmental Management System), ISO 9001:2015 (Quality Management System) and ISO 45001:2018 (Occupational Health and Safety Management System). The last recertification audit was held in 2022. In addition, two surveillance audits were conducted during the reporting period. All three audits were conducted by JAS/ANZ accredited auditing bodies to monitor and maintain the site's Integrated Management System (IMS), incorporating the Environmental Management System (EMS), and its certification.

NH uses the outcomes for these reviews to operate within the broad intent of the standard and management systems in general – that is, to strive for continuous improvement.

All 'areas of concern' raised during audits are formally tracked in the RIMS system through the year to ensure that any system deficiencies are rectified and opportunities for improvement are acted upon. Non-conformances with the standard or significant areas of concern are the subject of investigations to ensure that not only are deficiencies rectified, but the root cause of failure is understood and addressed.

A summary of the key findings from the audits is included in Table 3-2, Table 3-3 and Table 3-4. Note that as the audits are conducted for all three standards, many of the areas of concern do not directly relate to the EMS.

Strengths

- Business planning was well embedded through yearly tactical plans cascading to departmental plans and their review
- Position descriptions identified role responsibilities/accountabilities, including Environment and Health and Safety, as well as minimum role qualifications and skills
- Legislative update and review process was in place
- Environmental monitoring processes covering ground water sampling, Loogana leachate monitoring, SO₂ emissions and estuarine sampling activities

Areas of Concern - Corrective Action Required	Comments/Actions on Area of Concern		
Some gaps in training and some mandatory training requirements missing from the site training matrix. Some incorrect version of forms in use and inconsistencies in some controlled documents. Some gaps in implementation and maintenance of specified operational controls.	Review of the training matrix undertaken by Department Heads and gaps closed. Training plan developed for the Emergency Response Officers to increase mandatory training completion to 100%. Review of required documents to ensure references to ISO and legislation are correct and other document errors identified during the audit are corrected. Additional training provided to relevant persons regarding permit to work process in Electrolysis, and the isolation lock process in Casting Guidance to Contractor Management team on how to file		
	vendor request forms.		
Some gaps in maintenance of emergency preparedness and response processes, specifically regarding fire equipment.	Responsibility for the ERO fire equipment register assigned to the ERO Supervisor. Fire extinguisher compliance is listed as a KPI for the ERO's and will be reported on during quarterly KPI meetings.		
Some gaps in performance evaluation processes, specifically the completion of work area inspections, housekeeping of hazardous substance, and collection of one environmental sample missed.	Internal audit training rolled out to defined work groups, which included how to complete a work area inspection adequately. Wharf and Site Services hazardous storage areas were returned to required standards. The sample event that was missed in November 2021 has been included in the Environmental Monitoring Calendar in Microsoft Outlook.		
Some gaps in implementation of incident, nonconformity and corrective action processes, specifically some incidents not being recorded in RIMS, and some RIMS action not fully completed and verified.	It is well established on the site that incidents are to go into RIMS. These are discussed at pre-starts each morning. The need to enter incidents into RIMS will continue to be communicated site wide through various mechanisms. Better control of verifications achieved by reporting on overdue verifications to the leadership team on a weekly basis.		

Table 3-3 Key findings of ISO 14001 2023 IMS Surveillance Audit

Strengths

- Leadership commitment was evident on the need to get the IMS back on track and demonstrate continual improvement. Development of the 2030 strategy and associated FY24 priorities, site tactical plan and departmental plans was a clear demonstration of this.
- Emergency preparedness and response process were currently being managed by new service provider MSS. A focus on strengthening currently controls was evident.
- Operational areas visited of Roast Acid and Leach demonstrated a high level of engagement by personnel interviewed and controls applied were well demonstrated.
- Monitoring and evaluation processes, including tracking and review of performance KPIs, biological monitoring, environmental monitoring were well entrenched. The MPR process was a key meeting covering off on review of site performance.

Areas of Concern - Corrective Action Required	Comments/Actions on Area of Concern		
The five minor non-conformances raised in 2022 remained open due to lack of sufficient evidence that they had been closed out.	Action completion reviewed and evidence attached to the actions in RIMS		
Some gaps in ensuring nonconformities are adequately investigated and closed out.	Review assurance framework and adopt a risk-based approach, inclusive of audit management. Update Safety Management System Documentation to define action verification requirements and changes required to align to changes to assurance framework post review. Incident Management training delivered to site leaders whom interact with RIMS.		

Table 3-4 Key findings of ISO 14001 2024 IMS Surveillance Audit

Strengths

- Annual business planning process site plan cascaded to departmental tactical plans and individual plans
- Comprehensive Management Performance Review process
- Training matrix well maintained and establishment of compliance dashboard
- Renewal of site environmental permit
- Waste management was a strong focus in operational areas
- · Version control of key management system documents was well maintained.

Areas of Concern - Corrective Action Required	Comments/Actions on Area of Concern
Some gaps in ensuring that appropriate documented information as evidence of competence is retained.	

3.7 Environmental Compliance

The prevention of environmental incidents is promoted as an integral part of everyone's work responsibility. When incidents occur there is a procedure to investigate and implement corrective actions to reduce the risk of that particular incident occurring again.

The site uses a database referred to as 'RIMS' to track all environmental incidents impacting both on and off site, as well as near misses and community complaints, which ultimately provides data on areas where the operation can make environmental improvements. A daily incident report is generated from RIMS for all site personnel, which shows the details of reported incidents.

While we ultimately aim to be 100% compliant, NH recorded eight environmental incidents that resulted in a regulatory non-compliance during the 2022–2024 period; four in 2022, one in 2023 and three in 2024.

Details of these incidents and audit findings, including corrective actions, are presented in Appendix 2 – Notifiable and Reportable Environmental Incidents 2022 – 2024.

No incident that constituted material environmental harm as defined by the *Environmental Management & Pollution Control Act 1994* occurred during the reporting period.

3.8 Summary of Fulfilment of 2022–24 Environmental Objectives

NH had a number of environmental objectives for the 2022–24 period. An update against each objective is provided in Table 3-5.

Table 3-5 Progress against 2022–24 environmental objectives

	Waste and By-products
2022–2024 Objectives	2022-2024 Progress
Reduce existing stockpiles of process and non-process wastes and by-products by seeking out new and innovative recycling and stabilisation	Spent acid plant catalyst has long been a problematic waste product for NH, with the material being stored in bulka bags, and stockpiled on site for over 2 decades. In 2021, the site commenced transport of the material to the Nyrstar Port Pirie (NPP) site, where it is treated through their plant. During the reporting period, the entire stockpile of historical spent acid plant catalyst was removed to site and sent to NPP.
technologies.	Contaminated timber is currently stockpiled onsite within the Quarry. Combustion studies are underway at the University of Newcastle aiming to identify optimal process conditions for a purpose built thermal treatment plant and emission scrubbing system. Treatment in this manner has been identified as the most sustainable method of waste management.
	Manganese is a by-product of the zinc refining process, and is added to other by-products such as PG and LSLC for further treatment at NPP and other refineries. Historically, there have been instances where more manganese is produced than can immediately be returned to the process, resulting in a stockpile of the material. During the reporting period, a historical stockpile of manganese was incorporated in with other by-products, and removed from site.
Develop outlets for future waste products to prevent stockpiling.	During the reporting period, NH were successful in obtaining approvals for disposal of various streams of hazardous waste to the C Cell.
(1) (3)	Noise
2022–2024 Objectives	2022-2024 Progress
Develop and implement an action plan for reducing nuisance noise sources.	A nuisance noise source identified in the 2020 triennial noise survey was the reversing beepers on forklifts. In 2022 NH received new forklifts for the Casting Department. The forklifts have been fitted with broad band reversing beepers. The noise from broad band beepers have been shown to travel far less than the traditional style reversing beepers.
	In 2022 a new steam silencer was fitted to the SH24 steam vent in the area of the #5 roaster. The new silencer has successfully reduced the noise levels from venting steam from this point.
	The triennial community noise survey was again completed in 2023, with the top nuisance noise sources identified. Prior to the completion of the survey, NH came to understand the impact of nuisance noise from venting of steam from the #6 roaster and use of the new start-up scrubber, with these noise sources resulting in community complaints during the reporting period.
	In 2024, works to resolve the nuisance noise issues were completed, and included the installation of a new silencer on the #6 roaster primary steam vent, installation of silencers on two of the steam vents associated with a steam turbine, and complete lagging and cladding of the start-up scrubber stack to reduce tonal noise caused by large volumes of air flowing through the stack.

	Land Use and Aesthetics			
2022-2024 Objectives	2022-2024 Progress			
Continue to implement the site wide weed management plan to prioritise weed removal effort.	Limited targeted weed spraying was undertaken during the reporting period, focussing on areas where NH land abuts residential land.			
老	Energy Use and Greenhouse			
2022-2024 Objectives	2022-2024 Progress			
Continue to identify and pursue energy efficiency and greenhouse gas reduction opportunities through co-ordinated multi-disciplinary stakeholder sessions.	Work commenced in 2022 to short-list, and commence assessments of potential major decarbonisation projects at the Hobart site. This work continued throughout 2023 and 2024. Examples of potential projects include: displacement of diesel use in the cadmium plant with an electric furnace, casting induction furnace efficiency upgrades and changes to the paragoethite (PG) plant to eliminate the PG dryer, thus eliminating the use of natural gas on the site. There is a significant focus on reducing scope 1 and scope 2 emissions from the site, noting that these projects are significant, and represent many years of work.			
	Smaller short-term works 2023 have included the ongoing and continual replacement of lights with LED lighting.			
<u>~</u>	Soil and Groundwater			
2022–2024 Objectives	2022-2024 Progress			
Continued implementation of the site's Groundwater Management Strategy, including: Commissioning of the groundwater extraction system, completed in 2021. Completed in 2021. Completion of the design for the next groundwater management projects. Support for repairs to bunds that present a high risk to the environment due to disrepair, including inspections and advice on priorities for repair.	The triennial groundwater management plan was submitted, and subsequently approved by the EPA in 2022. This document outlines the focus areas for the 2022 – 2025 period. During the reporting period, approximately 309 t of zinc was recovered via the site's groundwater extraction systems. Improvements in pump reliability were a focus throughout the reporting period, resulting in an improvement in metal recovery rate from the Old Acid Plant system and the Leach Extraction System with 50 t more zinc recovered during this reporting period compared to the previous. Despite this, pumping reliability remains a challenge with the newly commissioned PG Dryer extraction system suffering from ongoing internal pump fouling. Numerous methods have been trialled to reduce the fouling, and thus improve the reliability of the pump. Trials with on-line citric acid cleaning have shown some success and will continue to be explored throughout the next reporting period. In 2022, NH commenced assessment of the jarosite storage facility, located in the Loogana area. The assessment included the installation of an additional three monitoring bores, and preliminary works to assess the stability of the facility. These works continued throughout 2023-2024. Following the discovery of hydrocarbon contamination in the proximity of the cellhouse in June 2020, NH have undertaken significant investigative works to assess environmental, and health risk associated with the contamination. In 2022 six new monitoring bores were installed to assist with this assessment. In 2023, assessment works were completed, which recommended follow up assessment in the future to confirm assessed trends and to review the efficacy of remedial action taken. This review work will be ongoing throughout the next			

Continue to review groundwater data as it is collected to ascertain any upward trends in metal concentrations.	This work is completed on an ongoing basis. Groundwater sampling is conducted every 6 months with the data reviewed upon receipt.
Undertake an annual review of the groundwater monitoring program to ensure it continues to provide the necessary data to inform decisions.	This review is undertaken following the assessment of data collected from the end of year groundwater monitoring program.
	Water
2022-2024 Objectives	2022-2024 Progress
Increase site use of the recycled water produced through the site's Reverse Osmosis plant to further reduce potable water use.	The RO plant was recommissioned in 2023 following extensive capital works to improve the output, and reliability of the plant and is again now producing recycled water for use on the site. 302 ML of recycled water was used on the site in 2024.
4	Air Emissions
2022 2024 Objectives	_
2022–2024 Objectives	2022-2024 Progress
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack.	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed and commissioned on the paragoethite dryer stack in mid-2022.
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack. Develop an improved lead in air monitoring and	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack. Develop an improved lead in air monitoring and reporting program, and	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed and commissioned on the paragoethite dryer stack in mid-2022. Two EBAM+ PM10 monitors were purchased in late 2022. These monitors, were
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack. Develop an improved lead in air monitoring and reporting program, and work with departments to reduce dust emissions in general, thus reducing	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed and commissioned on the paragoethite dryer stack in mid-2022. Two EBAM+ PM10 monitors were purchased in late 2022. These monitors, were installed in 2023 and are providing useful live data.
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack. Develop an improved lead in air monitoring and reporting program, and work with departments to reduce dust emissions in	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed and commissioned on the paragoethite dryer stack in mid-2022. Two EBAM+ PM10 monitors were purchased in late 2022. These monitors, were installed in 2023 and are providing useful live data. Additional sprinklers were installed on roadways around Roast. Repairs to the concentrate shed walls and roof were undertaken on an as
Installation of continuous emission monitors on the paragoethite stack and the anode casting fume scrubber stack. Develop an improved lead in air monitoring and reporting program, and work with departments to reduce dust emissions in general, thus reducing	The on-line particulate monitor installed on the anode casting fume scrubber stack was commissioned in early 2022. An on-line monitor was also installed and commissioned on the paragoethite dryer stack in mid-2022. Two EBAM+ PM10 monitors were purchased in late 2022. These monitors, were installed in 2023 and are providing useful live data. Additional sprinklers were installed on roadways around Roast. Repairs to the concentrate shed walls and roof were undertaken on an as required basis throughout the year. Repairs completed on calcine bin #2. The water cart operates 7 days a week throughout the summer period. Two dust suppression chemicals are now in use at the site, and are applied via the water cart. One dust suppressant is sprayed on areas that are not frequently trafficked, and the other is used on roadways in an effort to lengthen the time that the roads

Stakeholder Engagement							
2022–2024 Objectives	2022-2024 Progress						
Meet all self-imposed obligations for community engagement, including community meetings and community newsletters.	NH continues to maintain its community communication strategy. During the reporting period three community consultation meetings were held, and NH actively engaged with the community through events such as the Beaker Street Festival, the Mind Games Race for Research and through bolstering social media presence.						
Increase visibility of NH environmental management in the surrounding community through promoting school visits.	H hosted a number of school and university visits during the reporting period, and a Derwent Estuary Program Monitoring Taskforce meeting, during which embers of the group were provided with a site tour, focussing on groundwater covery systems, and the effluent treatment plant.						
	Environmental Risk						
2022–2024 Objectives	2022-2024 Progress						
Continue to review and update the site's Risk	The focus for the reporting period was the review of departmental environmental risks that have the potential to have an off-site impact.						
Register by department.	In 2024, inspections of all bunds and sumps on the site commenced, with the work to be completed in 2025.						
Develop management plan/controls for critical environmental risks based on the environmental risk review.	As per the above information, during the reporting period, a number of critical environmental risks were reviewed and where required, additional controls identified and actioned.						

4. MONITORING PROGRAMS

4.1 Atmospheric Emissions

The handling, storage and processing of materials at NH has the potential to adversely impact air quality both on and off site. Many process inputs, intermediate streams and residues comprise fine particulate materials that contain compounds of metals such as zinc, lead, cadmium, mercury, arsenic and antimony. Handling and smelting processes used at NH may release airborne particles and gases that contain these contaminants. These releases can be categorised into point source and diffuse source emissions. NH operates and maintains a range of systems to mitigate emissions to air such as gas scrubbing equipment, baghouses and dust minimisation controls.

4.1.1 Point Source Stack Emissions

4.1.1.1 Point Source Stack Emissions Background

Point source emissions originate from stacks, which are used to provide an outlet for air streams involved in the industrial process. Stacks, like chimneys, rely on atmospheric dispersion to reduce contaminant concentration to a low level that does not adversely affect human or environmental health. Where there is potential for an untreated emission to cause environmental harm due to insufficient dispersion, NH uses additional safeguards in the form of gas-cleaning technologies that clean the stream prior to its release. Technologies used at NH to treat air or gas streams from process and hygiene ventilation systems include wet scrubbers, baghouses, chemical absorption towers, and electrostatic precipitators.

Over the reporting period, NH stacks that rely on these gas cleaning processes to achieve sufficient exit air quality have been monitored according to requirements defined in The Permit. Over the reporting period, some changes have been made to the operating plant and the associated stacks in operation.

- Commissioning of a new baghouse in the Casting Department as part of the dross cooling and handling project, a second baghouse was installed on the dross plant in the Casting Department. The improvements to the dross plant have reduced the risk of fugitive dust emissions.
- Installation of on-line particulate monitors in the Paragoethite Dryer baghouse, the Anode Casting scrubber stack, and the Roaster baghouse. Data collected from the monitors is trended in real-time and enables ongoing assessment of particulate matter exiting the systems and improved early detection of any performance anomalies.

Each of these have been monitored according to the same requirements outlined in The Permit. Therefore, the list of monitored stacks include:

- Anode Casting Plant Exhaust Stack
- Cadmium Smelter Plant Stack
- Copper Sulphate Crystalliser Plant Vent Stack
- Foreshore (Tail Gas Scrubber) Stack
- ^Package Boiler 1 Stack
- Package Boiler 2 Stack
- Paragoethite (PG) Dryer Stack
- *Start-up Scrubber Stack

- Roaster Baghouse Stack
- *Zinc Oxide Fume Unloader
- V1 Furnace Stack
- V2 Furnace Stack
- Zinc Dust Plant 1 (ZP1) Stack
- Zinc Dust Plant 3 (ZP3) Stack
- MZR Furnace Stack
- MZR Dross Stack

The locations of these monitored stacks relative to site are shown in Figure 4.1

*This stack is not listed as a nominated exhaust stacks however it is monitored to the same requirements.

^ As of 5 February 2024, being the date of the current iteration of The Permit, it is no longer required to test these stacks.

Figure 4-1 Locations of monitored exhaust points

4.1.1.2 Point Source Stack Emissions Monitoring Program Details

The Permit details monitoring and compliance requirements for stacks. These requirements are summarised below in Table 4-1. All tests are required to be undertaken during normal plant operating conditions.

As of 5 February 2024, being the date of the current iteration of The Permit, it is no longer required to test the Start-Up Scrubber Stack, and the Package Boiler Stacks. However, these have been included in the below table, as they did form part of the previous Permit, which was in place for part of the reporting period.

The current Permit includes an expanded suite of metals to be tested. The below table reflects this change.

Table 4-1 Point source emissions monitoring, limits and reporting requirements.

Emission point / monitoring location	Test frequency	Test parameter	Emission limits
Foreshore (Tail Gas Scrubber) Stack	Continuous Six monthly	SO ₂ SO ₃ NO _x Particulates	7.2 g/m³ (2,520 ppm) 100 mg/m³ 2 g/m³ 100 mg/m³
Start Up Scrubber Stack	If online >3/12 months and at least three yearly	SO ₂ Particulates Metals * Cd Hg	7.2 g/m ³ 100 mg/m ³ 5 mg/m ³ 1 mg/m ³
Package Boilers 1 & 2 Stacks	If online >3/12 months and at least three yearly	SO ₂ NO _x Particulates	7.2 g/m ³ 2 g/m ³ 100 mg/m ³
Anode Casting Plant Exhaust Stack Cadmium Smelter Plant Stack Copper Sulphate Crystalliser Plant Vent Stack	Six monthly	Particulates Metals * Cd Hg	100 mg/m ³ 5 mg/m ³ 1 mg/m ³ 1 mg/m ³
Paragoethite Dryer Stack Roaster Baghouse Stack			
V1 Furnace Stack V2 Furnace Stack			
Zinc Dust Plant 1 Stack Zinc Dust Plant 3 Stack			
MZR Furnace Stack MZR Dross Stack			

^{*}The metals parameter is the sum total of Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, Sn and Vn.

4.1.1.3 Point Source Stack Emissions Results & Discussions

Discrete Emission Monitoring

The results of each annual program of testing between 2022 to 2024 are shown in Table 4-2. For comparison purposes, the results from the preceding three years have also been included.

Stack monitoring at NH is conducted independently by Ektimo. All results from Ektimo in this report are NATA accredited.

The 2022-2024 stack monitoring reports, as produced by the stack monitoring consultants are included as Appendix 4 - 2022 - 2024 Stack Emission Reports

The current Permit, issued on 5 February 2024 includes an expanded metals suite, with the total metals result now comprised of 13 metals. Under the previous Permit, only 5 metals were analysed. Thus, the combined metals results for 2024 are greater than previous years.

Table 4-2 Stack emission results – contaminant concentrations 2019 – 2024

Stack name	Test date	Particulates (mg/m³)	SO ₂ (mg/m³)	SO ₃ (mg/m³)	NO _x (mg/m³)	Cd (mg/m³)	Hg (mg/m³)	Metals (mg/m³)
Permit limit		100	7,200	100	2,000	1	1	5
	16/05/2019	1.75	*	0.13	32.5	0.0007	<0.0005	0.03344
	18/11/2019	<2	*	1.56	68.5	0.0039	0.0007	0.05813
	24/05/2020	1.15	*	0.21	55.5	0.0026	0.0009	0.04128
	10/12/2020	<1	*	7.15	31.5	0.00115	0.00092	0.0306
	22/04/2021	1.2	*	0.33	56.5	0.0039	0.00106	0.08421
Foreshore (Tail	17/10/2021	1.75	*	0.12	50	0.00205	0.00045	0.03800
Gas Scrubber) Stack	18/05/2022	1.2	*	0.295	41	0.017	0.00087	0.279
	13/10/2022	2.05	*	0.98	40	0.0035	0.0044	0.045
	11/05/2023	<2	*	0.32	35	0.0031	<0.0008	0.036
	14/11/2023	<2	*	0.37	19.5	0.001	<0.0005	0.021
	04/06/2024	<2	*	0.55	12.5	0.059	0.0004	0.1754
	13/11/2024	1.75	*	2.65	13	0.1314	<0.0005	0.2600
	17/05/2019	17	<5	-	50	0.0081	<0.0009	1.873
	08/10/2019	37	-	-	55	0.0065	<0.0004	1.0699
	25/04/2020	55	<5	-	63	0.056	<0.001	6.719
	10/12/2020	69	-	-	60	0.028	0.0021	5.3501
	23/04/2021	16	-	-	52	0.0096	<0.002	0.9036
Paragoethite	12/10/2021	6.9	-	-	50	0.0033	<0.001	0.0723
Dryer Stack	16/05/2022	4.7	<6	-	55	0.0043	<0.001	0.1251
	11/10/2022	5.2	-	-	50	0.0097	<0.001	0.4277
	09/05/2023	24	<6	-	55	0.054	0.0063	0.1353
	16/11/2023	4.7	-	-	59	0.014	<0.002	0.2615
	28/05/2024	<3	<6	-	45	0.0091	<0.001	0.3546
	11/11/2024	<2	-	-	49	0.013	<0.002	0.2644

Stack name	Test date	Particulates (mg/m³)	SO ₂ (mg/m³)	SO₃ (mg/m³)	NO _x (mg/m³)	Cd (mg/m³)	Hg (mg/m³)	Metals (mg/m³)
Permit limit		100	7,200	100	2,000	1	1	5
	20/05/2019	<3	<5	-	<3	0.0093	<0.0008	0.1071
	19/11/2019	<2	-	-	<3	0.013	0.00033	0.0583
	23/04/2020	<2	<5	-	4.7	0.093	<0.001	0.424
	09/12/2020	1.7	-	-	<4	0.0036	<0.0005	0.0261
	21/04/2021	<2	-	-	<3	0.0093	<0.0007	0.209
Cadmium	12/10/2021	<2	-	-	<3	0.0036	<0.0005	0.0461
Smelter Plant Stack	12/05/2022	<3	<6	-	<4	0.016	<0.0006	0.1146
	11/10/2022	<2	-	-	<4	0.011	<0.002	0.472
	10/05/2023	<3	<6	-	<4	0.034	0.0021	0.0931
	15/11/2023	<1	-	-	<4	0.036	<0.0005	0.0725
	03/06/2024	5.7	<6	-	<4	1.2	<0.0009	1.6429
	13/11/2024	8.2	-	-	4.7	2.2	<0.0009	2.3434
	24/06/2019	<2	<5	-	<3	0.033	<0.0006	0.0826
	17/11/2019	3.7	-	-	<3	0.015	0.0007	0.0577
	22/04/2020	<3	<5	-	<3	0.032	0.047	0.112
	18/12/2020	<3	-	-	<4	0.028	<0.0007	0.0877
Copper	26/04/2021	<3	-	-	<3	0.027	0.015	0.151
Sulphate	13/10/2021	4.8	-	-	<3	0.031	0.014	0.1755
Crystalliser Plant Vent	10/05/2022	<3	<6	-	<4	0.85	0.012	1.2031
Stack	11/10/2022	5.8	-	-	<4	0.028	0.0051	0.1041
	09/05/2023	66	<6	-	<4	0.1	0.012	0.154
	05/12/2023	<4	-	-	<4	0.011	0.00087	0.05887
	28/05/2024	5.8	<6	-	<4	0.047	0.014	0.2267
	05/12/2024	2.6	-	-	<4	0.078	0.0057	0.2923
	13/05/2019	<3	<5	-	<3	0.001	<0.0005	0.0405
	04/11/2019	3.3	-	-	<4	<0.0004	<0.0004	0.0133
	21/04/2020	<3	<5	-	<3	0.00067	<0.0006	0.0403
	08/12/2020	<2	-	-	<4	<0.0008	<0.0006	0.0203
	19/04/2021	3.4	-	-	<3	0.0022	<0.0008	0.07
Casting V1	14/10/2021	>2	-	-	<3	0.004	<0.0006	0.0526
Furnace Stack	09/05/2022	<4	<6	-	<4	0.003	<0.0009	0.0609
	10/10/2022	<3	-	-	<4	0.0019	<0.001	0.0689
	08/05/2023	<3	<6	-	<4	<0.0008	<0.0009	0.0225
	15/11/2023	<3	-	-	<4	0.031	<0.001	0.214
	27/05/2024	<2	<6	-	<4	0.00089	<0.0009	0.0586
	12/11/2024	<3	-	-	<4	0.0018	<0.0007	0.0874

Stack name	Test date	Particulates (mg/m³)	SO ₂ (mg/m³)	SO₃ (mg/m³)	NO _x (mg/m³)	Cd (mg/m³)	Hg (mg/m³)	Metals (mg/m³)
Permit limit		100	7,200	100	2,000	1	1	5
	13/05/2019	<3	<5	1	<3	0.0015	<0.0005	0.047
	04/11/2019	<2	-	-	<4	<0.0009	<0.0004	0.0223
	21/04/2020	<2	8.3	-	<3	<0.0008	<0.0005	0.0263
	08/12/2020	<2	-	-	5.6	0.0008	<0.0008	0.0236
	19/04/2021	<2	-	-	<3	0.0016	<0.0009	0.0595
Casting V2	14/10/2021	<2	-	-	<3	0.0022	<0.0005	0.0297
Furnace Stack	09/05/2022	<3	7.6	-	<4	0.0013	<0.0005	0.0488
	10/10/2022	11	-	-	<4	0.0013	0.0012	0.0915
	08/05/2023	<4	<6	-	<4	<0.001	<0.001	0.053
	15/11/2023	<2	-	-	<4	0.014	<0.0005	0.0625
	27/05/2024	<3	19	-	<4	0.00058	<0.0008	0.0992
	12/11/2024	<2	-	-	<4	0.0048	<0.0008	0.0944
	15/05/2019	<3	830	0.4	<3	0.0073	<0.0008	0.3094
	18/11/2019	9	<5	-	<3	0.021	<0.0005	0.4259
	25/04/2020	<3	2.5	0.15	<3	0.0082	0.18	0.3572
	08/12/2020	2.7	-	-	<4	0.028	0.0014	0.531
	20/04/2021	50	1,900	1.1	3.4	0.18	0.012	2.524
Roaster	16/10/2021	37	-	-	5.3	0.026	0.018	0.4544
Baghouse Stack	17/05/2022	52	2800	0.68	<4	0.32	0.0021	4.8513
	12/10/2022	<2	3400	-	<4	0.0046	0.018	0.0846
	16/05/2023	3.5	7.2	0.93	<4	0.026	0.0014	0.3583
	16/11/2023	13	5.9	-	<4	0.031	0.003	0.4259
	29/05/2024	<2	150	1.2	<4	0.026	0.0014	0.3278
	03/12/2024	6.6	650	-	<4	0.026	0.0008	0.2984
	14/05/2019	14	<5	-	<3	0.0083	<0.0009	0.2422
	09/10/2019	2.8	-	-	<4	<0.0004	<0.0002	0.1666
	23/04/2020	12	<5	-	<3	0.005	0.0013	0.4043
	09/12/2020	<3	-	-	<4	0.001	0.00093	0.1809
	21/04/2021	4.7	-	-	<3	0.009	0.0012	0.2002
Anode Casting	15/10/2021	120	-	-	<3	0.016	0.0011	1.8271
Plant Exhaust Stack	12/05/2022	11	<6	-	<4	0.013	<0.0008	0.3308
	12/10/2022	4.7	-	-	<4	0.0084	0.0022	0.1726
	10/05/2023	<2	<6	-	<4	0.014	<0.0008	1.7238
	15/11/2023	9.4	-	-	<4	0.0034	<0.0009	0.1613
	29/05/2024	7.1	<6	-	<4	0.082	0.0031	0.4325
	12/11/2024	4.3	-	-	<4	0.0064	<0.001	0.3438

Stack name	Test date	Particulates (mg/m³)	SO ₂ (mg/m³)	SO₃ (mg/m³)	NO _x (mg/m³)	Cd (mg/m³)	Hg (mg/m³)	Metals (mg/m³)
Permit limit		100	7,200	100	2,000	1	1	5
	15/05/2019	4.3	<5	-	<3	0.0012	<0.0005	0.0697
	19/11/2019	5.5	-	-	<3	0.0037	0.00075	0.1005
	22/04/2020	32	<5	-	<3	0.018	0.0026	0.4406
	09/12/2020	<3	-	-	<4	0.0011	<0.0009	0.038
	27/04/2021	<2	-	-	<3	0.013	<0.0007	0.0727
Zinc Dust Plant	15/10/2021	4.4	-	-	<3	0.019	<0.0008	0.1708
1 Stack	11/05/2022	2.4	<6	-	<4	0.017	<0.0007	0.0807
	11/10/2022	<3	-	-	<4	0.0073	<0.0008	0.0551
	10/05/2023	<3	<6	-	<4	0.0063	<0.0007	0.137
	14/11/2023	<2	-	-	<4	0.0022	<0.0006	0.0488
	30/05/2024	5.6	<6	-	<4	0.022	<0.001	0.3071
	11/11/2024	5	-	-	<4	0.0039	<0.0007	0.088
	14/05/2019	3.1	10	-	<3	0.0047	<0.0007	0.1844
	17/11/2019	6.5	-	-	<3	0.0056	<0.0007	0.0833
	21/04/2020	24	8.3	-	<3	<0.001	<0.0006	0.0833
	09/12/2020	8.5	-	-	<4	0.00059	<0.0007	0.1033
	21/04/2021	4.7	-	-	<3	0.081	0.0019	1.1069
Zina Duat Dlant	16/10/2021	26	-	-	<3	0.0015	<0.001	0.1815
Zinc Dust Plant 3 Stack	11/05/2022	27	<6	-	<4	0.011	<0.0006	0.3596
	10/10/2022	12	-	-	<4	0.0011	<0.001	0.1621
	10/05/2023	<2	<6	-	<4	0.0071	<0.005	0.0716
	14/11/2023	5.8	-	-	<4	0.0047	0.0011	0.1078
	30/05/2024	8.7	<6	-	<4	0.0056	<0.0009	0.2208
	11/11/2024	6.9	-	-	<4	0.0021	<0.0008	0.1251
	06/11/2019	18	13	-	12	0.032	<0.0005	0.1367
	03/08/2022	7.3	37	-	5.8	0.013	0.0021	0.2091
Start Up Scrubber Stack	16/05/2023 (new stack)	17	<6	-	5.8	0.054	<0.001	1.3

Stack name	Test date	Particulates (mg/m³)	SO ₂ (mg/m³)	SO₃ (mg/m³)	NO _x (mg/m³)	Cd (mg/m³)	Hg (mg/m³)	Metals (mg/m³)
Permit limit		100	7,200	100	2,000	1	1	5
	14/05/2019	2.5	14	-	4.8	<0.0008	<0.0004	0.0272
	17/11/2019	<2	-	-	<3	0.0045	<0.0005	0.037
	23/04/2020	<3	<5	-	5.9	0.002	<0.0008	0.0308
	08/12/2020	<2	-	-	<4	<0.0008	<0.0006	0.0214
	20/04/2021	<2	-	-	4.7	0.0015	0.0011	0.0376
MZR Furnace	16/10/2021	<2	-	-	<3	0.0075	0.0082	0.1247
Stack	10/05/2022	4.2	<6	-	<4	0.032	0.00086	0.07386
	12/10/2022	<2	-	-	16	0.0076	0.0014	0.099
	15/05/2023	<3	<6	-	<4	0.0023	<0.0007	0.028
	16/11/2023	<2	10	-	8.6	0.011	<0.0009	0.1169
	30/05/2024	15	11	-	17	0.009	<0.0009	0.1966
	12/11/2024	23	<6	-	12	0.031	<0.0007	0.2837
	17/05/2022	<2	<6	-	<4	0.003	<0.0005	0.1522
	12/10/2022	<2	-	-	<4	0.0084	<0.0006	0.098
MZR Dross	15/05/2023	<7	-	-	<4	0.005	<0.0009	0.0579
Stack	16/11/2023	<2	-	-	<4	0.0099	<0.0008	0.0577
	03/06/2024	<2	<6-	-	<4	0.2	<0.0009	0.6524
	12/11/2024	<3	-	-	<4	0.007	<0.0009	0.1065
	14/10/2021	<8	-	-	<3	0.0075	0.0082	0.1247
	13/05/2022	<5	<6	-	<4	0.0082	<0.001	0.0872
Zinc Oxide	12/10/2022	<4	-	-	<4	0.0044	<0.001	0.0963
Fume	12/05/2023	<4	1.8	-	<4	0.0095	<0.001	0.1255
Debagging	17/11/2023	<4	<6	-	<4	0.0061	<0.001	0.1441
	31/05/2024	<6	<6	-	<4	0.024	<0.001	0.1926
	13/11/2024	<5	_	-	<4	0.0075	<0.002	0.2192
"Green Text"		Indica	tes a compli	ant result for	specified pa	arameter un	der The Per	mit
"Red Text"		Indicates	Indicates a non-compliant result for specified parameter under The Permit					
"Shaded cell"		Indicates	s results for	parameters i	not specified	for testing	under The P	ermit

^{*} SO₂ emissions are covered in foreshore stack – continuous emission monitoring

Continuous Emission Monitoring Results

15 minute average data for SO_2 emissions from the foreshore (tail gas scrubbing) stack over the current reporting period and the preceding three years is shown in Figure 4.2. Long-term performance statistics for 2019 - 2024 are shown below in Table 4-3. Spikes in SO_2 concentration are the result of plant upsets. Processing rates are controlled to ensure The Permit conditions for the foreshore stack SO_2 emissions are met. The Permit limit is based on a Continuous (air) Emission Monitoring device and the limit for SO_2 is not considered breached unless the limit is exceeded continuously for greater than 15 minutes. At no point during the reporting period did the site breach this condition.

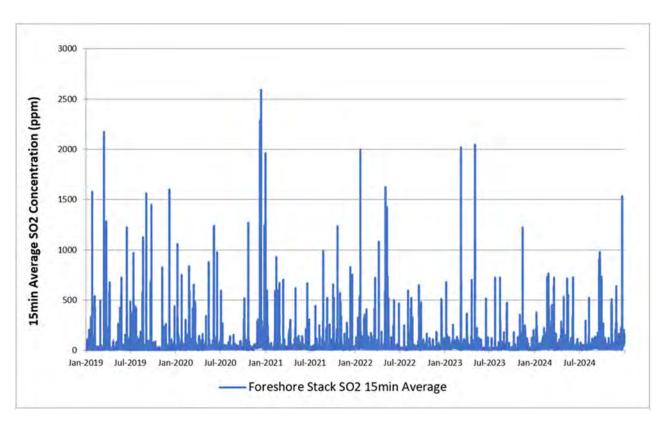


Figure 4-2 Foreshore stack SO₂ continuous emission monitor readings 2019 – 2024 reporting period

Table 4-3 Foreshore stack emissions – long-term performance 2019 – 2024

	Year							
Continuous Emission Analysis	2019	2020	2021	2022	2023	2024		
Yearly average SO ₂ 15min (ppm)	19	27	24	27	25	44		
50% of results were below	8	15	13	16	14	31		
90% of results were below	29	50	47	57	57	95		
99% of results were below	181	239	135	141	137	175		

Emission Monitoring Discussion

Two notifiable non-compliances were recorded for emissions to atmosphere during the reporting period. During the biannual Stack Testing, on 03/06/2024 the cadmium emission from the Cadmium Smelter Plant Stack (CSPS) was measured at 1.2 mg/m³, exceeding the limit as stipulated in The Permit of 1 mg/m³. The stack testing report was received from Ektimo on 26/07/2024 and upon receipt, a formal investigation commenced.

The primary contributing factors were determined to be:

- · Insufficient water delivered to the scrubbing tower
- Dirty water used for gas scrubbing
- Water filtration system damaged/inefficient.

The stack emissions from the CSPS were re-tested by Ektimo on 29/08/2024, with results received on 19/09/2024. A cadmium emission result of 0.56 mg/m³ was recorded.

On 13/11/2024 during biannual Stack Testing, the cadmium emission from the CSPS was measured at 2.2 mg/m³, exceeding the limit as stipulated in The Permit of 1 mg/m³. The stack testing report was received from Ektimo on 24/01/2025 and upon receipt, a formal investigation commenced.

The primary contributing factors were determined to be:

- · Insufficient water delivered to the scrubbing tower
- Over application of flux during plant operation.

The stack emissions from the CSPS will be re-tested in 2025, following the implementation of actions from the investigation.

The graphical (Figure 4.2) and tabulated (Table 4-3) trends show that 2024 has seen average, 90th percentile and 99th percentile SO_2 emissions from the tail gas scrubbing (foreshore) stack increasing in comparison to the 2019 – 2023 data. It is considered that this increase is primarily due to operational issues within the acid plant. Actions have been undertaken in early 2025 to address the increase in SO_2 emissions, including the replacement of fouled packing in #3 Tail Gas Scrubber, which improved the scrubbing efficiency in the tower.

4.1.2 Ambient Sulphur Dioxide

4.1.2.1 Ambient Sulphur Dioxide Background

The foreshore (tail gas scrubbing) stack is the major source of SO₂ emitted from NH. In this stack, SO₂ concentrations are monitored continuously in order to manage the production process such that environmental impacts are minimised. To verify that these controls are effective in the receiving environment, additional SO₂ monitors are installed around the plant and in the community. These provide feedback to the plant for monitoring compliance with ground level concentration (GLC) regulations.

Emissions during normal operations are well within accepted guideline and regulatory values, but abnormal or emergency conditions have greater potential for releases of SO₂ gas to impact the community. Damage to or deterioration of infrastructure can also result in diffuse emissions that can increase GLCs.

NH operational emergency response protocols are well-established and any abnormal gas releases are detected and acted upon quickly. GLCs are displayed on process control screens at the Roast and Effluent Treatment control rooms. Trigger values are set for five minute and one hour average data to alert relevant personnel to elevated GLCs so that appropriate controls can be initiated. Operational responses include progressively reducing plant output or, if emissions cannot be controlled, isolating and shutting down the Roasting and Acid plants.

4.1.2.2 Ambient Sulphur Dioxide Monitoring Program Details

The Permit mandates monitoring requirements for the assessment of ambient SO₂. Reportable limits are presented in Table 4-4 below.

Table 4-4 Permit specified limits for SO₂

Emission point / monitoring location	Test frequency	Test parameter	Emission limits
Ambient air	Continuous	GLC SO ₂	24 hour average: 0.20ppm
			1 day average: 0.080ppm

Continuous SO₂ monitoring of ambient air occurs at three locations as shown in Figure 4.3. These locations were selected as points most likely to represent areas impacted by plant SO₂ releases.

- Technopark, Dowsing's Point, Goodwood;
- Tennis Court, Risdon Road, Lutana; and
- NH buffer zone, near Birch Road, Lutana.

Ambient SO₂ concentrations are monitored using Teledyne API 100E and Thermo Fisher 43i analysers, certified to be compliant with recognised international standards for performance. SO₂ is measured continuously and five minute average concentration results are sent via telemetry to NH databases.

Figure 4-3 Community SO₂ monitor locations

4.1.2.3 Ambient Sulphur Dioxide Results & Discussions

There were no exceedances of the 24 hour rolling average limit during the reporting period, however there was one exceedance of the 1 hour rolling average limit. During the start-up of #6 Fluidised Bed Roaster on 22 January, the 200 ppb hourly average limit was exceeded at the Technopark monitor.

Annual results from 2019 – 2024 are displayed for each of the three monitoring sites in the following figures. The graphs display the rolling 1 and 24 hour averages as measured every 5 minutes. The emission limit exceedence of the 1 hour rolling average at Technopark, recorded on 22 January 2022 has been removed from the annual results graph (Figure 4-6) for the purposes of better displaying the remainder of the reporting period data, without the scaling issues caused by including the elevated data recorded on 22 January. The data from 22 January 2022 has been included as a separate graph (Figure 4-7).

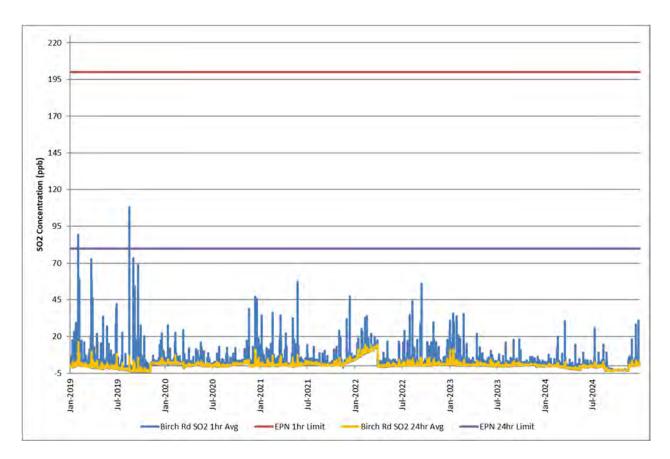


Figure 4-4 Birch Road GLC SO₂ (1 hour and 24 hour averages) 2019-2024

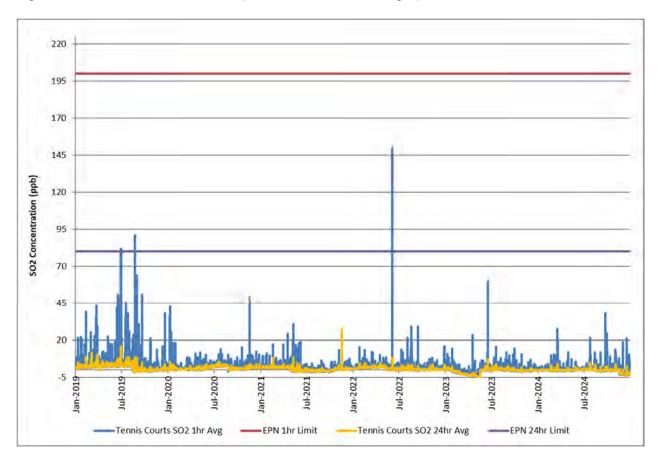


Figure 4-5 Tennis Courts GLC SO₂ (1 hour and 24 hour averages) 2019-2024

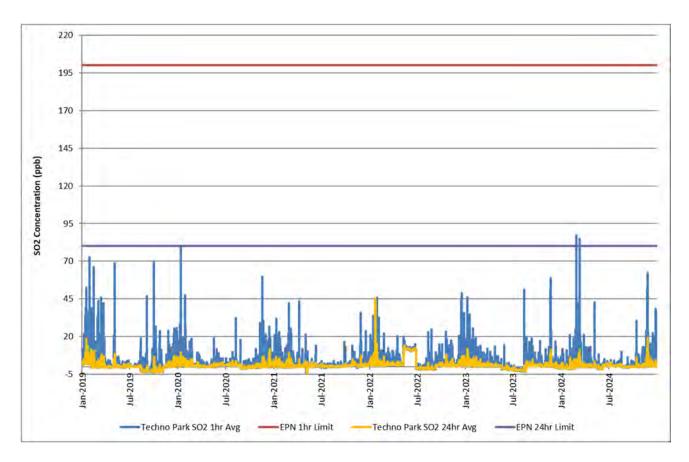


Figure 4-6 Techno Park GLC SO₂ (1 hour and 24 hour averages) 2019-2024 (excluding 22 January 2022)

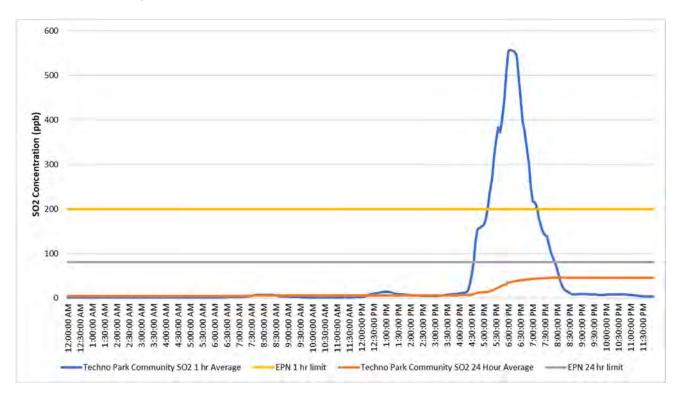


Figure 4-7 22 January 2022 Techno Park GLC SO₂ (1 hour and 24 hour averages). Note the 1 hour average that exceeded the emission limit

4.1.3 Ambient Particulate Matter

4.1.3.1 Ambient Particulate Matter Background

Dust generation has the potential to have adverse effects when the material released is high in heavy metals and / or very high in general concentration. Process streams, residual materials, contaminated open areas and vehicle movements can all contribute to dust emissions, particularly in dry and windy conditions.

Dust emissions at NH generally impact the local plant area but may contribute to dust in the broader atmosphere. Ambient particulate matter in air and its composition is measured at several monitoring sites around NH and the surrounding community to gauge the smelter's impact on air quality and to guide ongoing improvement strategies. This monitoring is achieved using high volume air sampling (HVAS) units to capture total suspended particulate matter (TSPM) samples.

NH employs a range of operational and engineering controls in order to prevent dust emissions, including but not limited to; undercover storage, gas-cleaning technologies such as baghouses and scrubbers, sweeper and water trucks to clean and wet roadways and revegetation strategies.

4.1.3.2 Ambient Particulate Matter Monitoring Program Details

TSPM levels are measured at three regulated locations around the NH site (Figure 4-8). Reportable limits are presented in Table 4-5.

Table 4-5 Air quality Permit limits

Emission point / monitoring location	Test frequency	Test parameter	Emission limits
Ambient air at three representative sites	Every six days for a continuous 24 hour period	Lead	0.0015 mg/m³ 90 day rolling average

TSPM results are not regulated per Permit requirements, but are shown in this section in comparison to the QLD EPA guideline of $90 \mu g/m^3$ for annual mean TSPM¹.

High volume sampling of ambient air for compliance reporting purposes occurs at three locations as shown in Figure 4-8. These community monitoring locations are:

- Risdon Road North (RRNT), NH northern exit, Lutana;
- Tennis Courts (TCT), Risdon Road, Lutana; and
- NH buffer zone, near Birch Road (BRT), Lutana.

The sampling units collect 24 hour composite samples, operating continuously for a 24 hour period on a six day cycle. The units draw a large volume of air, approximately 70 m 3 /hr, using a vacuum pump, with airborne dust collected on a glass fibre filter paper. Filter papers are analysed for total particulate load and metals including lead, zinc, cadmium, iron and manganese. Average concentrations of dust and metals in air are calculated according to Australian Standard specifications using the HVAS operating hours, flow rate and particulate mass to give a result in micrograms per cubic metre (μ g/m 3).

¹ Queensland Environmental Protection (Air) Policy 2019

Figure 4-8 Location of high volume TSPM sampling equipment

4.1.3.3 Ambient Particulate Matter Results & Discussions

Mean total suspended particulate matter (TSPM) concentrations were below the QLD EPA guideline for the reporting period across all monitoring sites (Figure 4-9). The Risdon Road North (RRN) monitoring site receives the highest dust load of the three compliance sites. The RRN site is showing a trend of declining average TSPM values, while the remaining two sites show no clear trend.

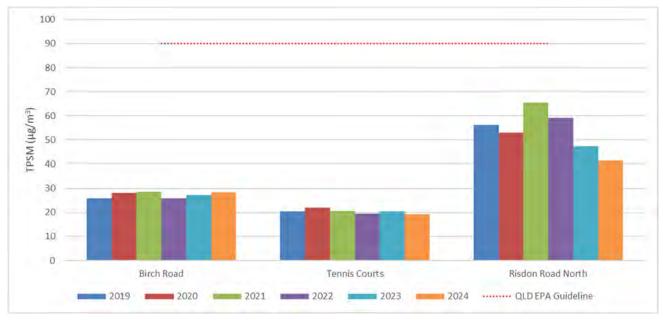


Figure 4-9 Annual mean TSPM Concentrations across three monitoring sites compared to QLD EPA Annual Guideline for 2019-2024

The 90-day rolling average for total suspended particulate matter of lead (TSPM-Pb) is the primary performance indicator for process dust emissions. The TSPM-Pb 90-day rolling average for the three sites between 2022-2024 are shown in Figure 4-10. The lead in TSPM results at Birch Road and the Tennis Courts were consistently well below the limit prescribed by The Permit. These findings are consistent with previous sampling periods during which no non-compliances were recorded at these sites. Historically, the results at these two sites have shown a general downward trend in summer peak values since monitoring commenced in 2007.

In 2022 NH recorded a notifiable non-compliance where the TSPM-Pb concentration at Risdon Road North (RRN) exceeded The Permit 90-day average limit. From the end of February 2022 to early April 2022 the TSPM-Pb was in excess of the limit of 0.0015 mg/m³, reaching a peak of 0.00176 mg/m³. Additional information has been included in Appendix 2 – Notifiable and Reportable Environmental Incidents 2022 – 2024. Dust management remains one of the ongoing priorities for environmental management at NH.

The increased lead in air recorded at the site in the 2019-2021 period prompted improvements in the assessment of the data. Four continuous PM10 monitors were installed at the site in 2020 to enable more frequent assessment of ambient dust levels. In 2022, air quality consultants were utilised to provide further advice on best practices for assessing lead in air onsite and as a result in 2022/2023 an additional two continuous PM10 monitors (EBAM+) were installed at the Risdon Road North monitoring site and at Stanhope Point. These additional monitors have a higher sampling volume capacity compared to the monitors installed in 2020.

Within the TSPM-Pb results, seasonal trends are evident, with dust generally lower during the winter months. This is consistent with the data recorded in previous sampling periods.

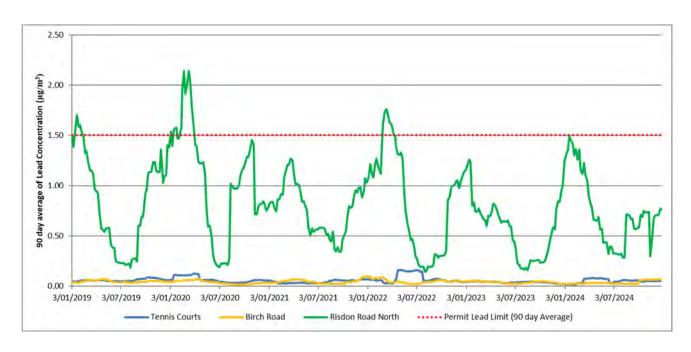


Figure 4-10 90-day rolling average for TSPM-Pb across three monitoring sites compared to The Permit site lead limit 2019-2024

4.2 Site Water Management

Site water management forms a critical element of emissions mitigation and minimisation at NH. This is reflected in the site's permit conditions that require all contaminated and potentially contaminated wastewater that is not recycled or reused in the plant be treated in the Effluent Treatment Plant (ETP). NH also maintains a high-level strategy aimed at improving all aspects of water management at the site.

Contained site stormwater and extracted groundwater is treated through the ETP to remove metals and solids before being discharged through the permitted discharge point. NH operates a closed drainage system to direct all flows to the contaminated water ponds (CWP).

4.2.1 Process Water

4.2.1.1 Process Water Background

Process waters are defined here as those that result from various production processes such as cooling or scrubbing waters, filtrate from the processing of some solids, plant wash-waters and mercury removal filtrate (MRF). Process waters are collected by site drains and directed to either the CWP, the detention basins, or directly to the ETP. The ETP removes metals through lime neutralisation and flocculation to settle solids before discharging effluent to the Derwent Estuary via the foreshore scrubber outfall (FSO). Solids removed from the CWP and ETP process are returned either to the leaching department or sent to Nyrstar's Port Pirie Smelter for metal recovery. Monitoring key site drains helps identify contamination into the ETP and this information is used to ensure unnecessary inputs at the source are minimised.

The ETP was commissioned in 1992 and has a design capacity of 2,500 ML per annum (dependent on influent composition).

Prior to discharge through the permitted outfall, flows from the ETP are combined with tail gas scrubber discharge (refer Figure 4.11).

Potable water usage is a critical element of site water management, as much of this water combines with process waters and requires treatment through the ETP. Monitoring, operational and strategic actions to reduce potable water consumption are important in minimising unnecessary additions to the process circuit. This links with Nyrstar's Environment Policy wherein we aim to minimise the use of natural resources, such as the energy and lime required to treat our effluent.

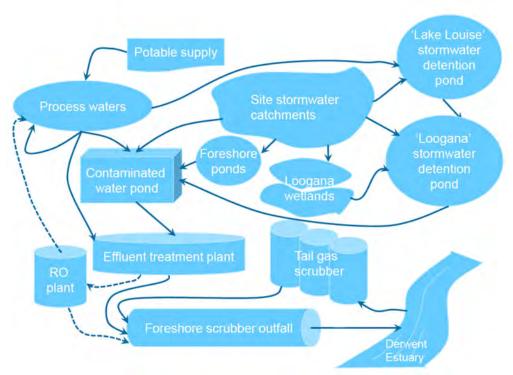


Figure 4-11 Process and stormwater system. Recycled water flows that came online in 2016 shown with a dotted line

4.2.1.2 Process Water Monitoring Program Details

Two daily 24 hour composite samples are taken from the FSO using programmed water auto-samplers. The samplers draw approximately 30 mL of water into a sample bottle at approximately 15 minute intervals from the discharging stream. The samplers are listed on the site's Critical Instrumentation Register and receive three monthly programmed maintenance checks as well as priority repair status if any failures occur. The daily composite samples are analysed for pH, iron, sulphate, copper, cadmium, mercury, lead and zinc.

An average of the two composite samples is taken and used for reporting purposes. The flow rate is measured in the two major contributors to the FSO (estuarine-sourced scrubbing water and effluent from the ETP), the sum of which gives a total discharge.

If the composite sample is above permit limits this constitutes a regulatory non-compliance and is immediately reported to the EPA.

In addition to the daily sampling schedule, further analysis is conducted six monthly in accordance with The Permit, and for National Pollutant Inventory (NPI) reporting purposes. Each year a minimum of two of the 24 hour composite samples are analysed for the extended suite of analyses given in Table 4-6 to ensure that these substances do not exceed The Permit emission limits. The suite is further extended to include beryllium, cobalt and nickel for annual NPI reporting.

Table 4-6 Foreshore outfall monitoring and reporting requirements and permit limits

Monitoring / sampling frequency	Monitoring parameter	Regulatory limit (mg/L)		
Daily 24 hour composite	Discharge (L/h)	-		
Composite	Zinc	5.00		
	Cadmium	0.03		
	Lead	0.20		
	Mercury	0.01		
Six monthly	Arsenic	0.25		
	Copper	1.00		
	Iron	5.00		
	Total suspended solids	60.00		
	N (as ammonia)	1.50		
	Fluoride	10.00		
	Manganese	5.00		

Figure 4.12 shows the annual flow discharged from the FSO for both the current reporting period, and the previous triennial reporting period. The total flow is split in to the two streams – the estuarine water used to scrub residual SO_2 from the gas stream through the tail gas scrubbers, and the effluent that is treated, and discharged from the ETP. The total volume of water discharged to the Derwent Estuary (three saltwater intake lines and ETP effluent) during the reporting period was 97.8 GL. This is a slight increase on the previous reporting period 2019 – 2021 where 96.9 GL was discharged.

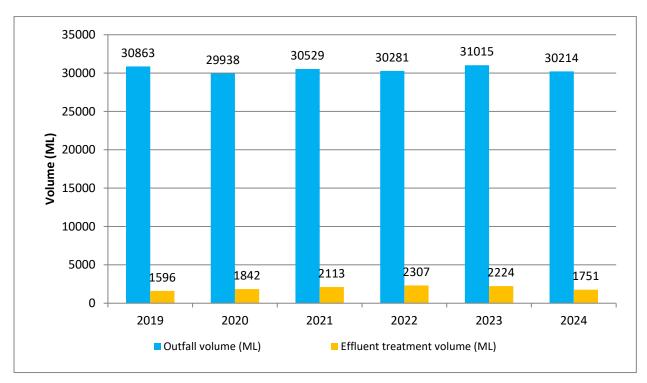


Figure 4-12 Discharge from the foreshore outfall

Composite Sampling Results

Minimum, maximum and mean results of the daily and monthly analyses are presented below in Table 4-7, together with the regulatory limits for each analyte. Note that where the result was recorded at below the laboratory limit of reporting, the limit of reporting value was used.

Table 4-7 Summary of outfall analytical results; 2019 to 2024.

Monitoring / sampling frequency	Monitoring parameter	Limit of reporting (mg/L)	Minimum concentration (mg/L)	Mean concentration (mg/L)	Maximum concentration (mg/L)	Regulatory limit (mg/L)
Daily 24 hour	Zinc	0.030	0.030	0.038	0.210	5.00
composite	Cadmium	0.005	0.005	0.005	0.008	0.03
	Lead	0.030	0.030	0.030	0.070	0.20
	Mercury	0.00005	0.00015	0.0009	0.0061	0.01
Six monthly	Arsenic	0.001	0.002	0.005	0.010	0.25
	Copper	0.010	0.010	0.020	0.030	1.00
	Iron	0.015	0.050	0.140	2.010	5.00
	Total suspended solids	2.000	2.000	4.683	9.200	60.00
	N (as ammonia)	0.001	0.007	0.044	0.080	1.50
	Fluoride	0.1	1.500	1.708	1.900	10.00
	Manganese	0.005	0.008	0.017	0.022	5.00

Of the daily metals analysed on a 24 hour basis, only zinc and mercury are typically present at concentrations above the laboratory limit of reporting. A comparison of the average annual concentration of these metals for the reporting period, and for the previous sampling period are displayed in Figure 4.13 below. Trends are displayed as both the mean and median in an effort to identify longer term trends, less susceptible to short term spikes which may influence the annual mean concentration.

As can be seen in Figure 4.13, the average zinc has decreased across the reporting period, whilst the average mercury has remained reasonably consistent.

In the previous PER, an increase in mercury concentration within outfall between 2019 and 2021 was reported. It is noted that the average and median mercury concentrations have decreased in the 2022 – 2024 period, however do still remain elevated when compared to the 2016 – 2018 period. The site is continuing to work towards reducing mercury in outfall concentrations to historical norms, with ongoing maintenance to the electrostatic mist precipitators, and the tail gas scrubbing system.

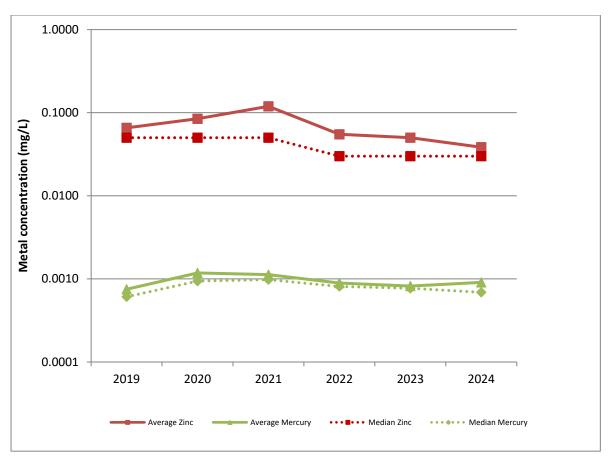


Figure 4-13 Average annual zinc and mercury concentration in outfall

4.2.2 Potable, Reused and Recycled Water Consumption

Monitoring operational and strategic actions to reduce potable water consumption are important in meeting sustainability objectives in accordance with Nyrstar's Environment Policy. Figure 4-14 shows the site's potable water consumption over the current, and previous triennial reporting period, and the volume of reused/recycled water utilised on site.

The recycled water is generated through two different sources:

- Wastewater collected in the CWP and reused in the plant.
- The on-site RO plant through which water is recycled and used in the plant.

The site has achieved a considerable increase in recycled water consumption in 2024. This follows a capital project that commenced in late 2022 to re-instate the RO plant after a period of downtime. The project was completed in late 2023, and the RO plant produced high quality recycled water for use on the site throughout 2024.

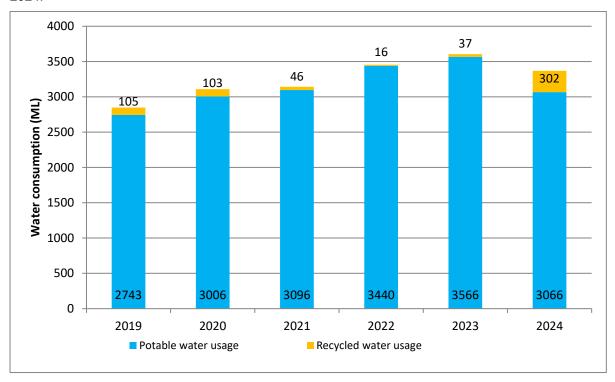


Figure 4-14 Water consumption (potable and recycled) 2019 – 2024

4.2.3 Stormwater

4.2.3.1 Stormwater Background

Due to contamination of surfaces, stormwater flow from the site has the potential to exceed prescribed limits for discharges to surface waters. The State Policy on Water Quality Management 1997 requires that diffuse sources of pollution be controlled in order to meet declared water quality objectives for the receiving waters. These requirements are reflected in Condition SW1 of The Permit as varied which requires all stormwater to be contained on site and treated through the Effluent Treatment Plant (ETP) prior to discharge from the monitored outfall point.

Key to this process is the Site's closed drainage system that ensures flows within the process area report to the Contaminated Water Pond (CWP) or to a detention basin. Flows exceeding the capacity of the ETP and interim storages must only be discharged from the nominated emission points as illustrated in Figure 4-15.

NH has developed and progressively implemented the Stormwater Management Strategy to ensure regulatory requirements are met and continuous improvement is achieved through best practice environmental management principles.

4.2.3.2 Stormwater Monitoring Program Details

The present stormwater system has six emergency overflow points to the Derwent Estuary as defined in Attachment 9 of The Permit as varied. These are depicted within Figure 4-15 and listed below:

- New Town Bay outfall;
- Loogana overflow;
- C drain outfall;
- B drain outfall:
- #2 CWP outfall: and
- Wharf stormwater pond overflow.

High frequency storm events are contained within the site's stormwater infrastructure for treatment at the ETP. During larger storms, the most contaminated flows (based on catchment land use) are directed to the CWP as a priority.

The CWP has a total containment volume of approximately 7,000 m³, of which the nominal operating volume is 1,000 m³, leaving 6,000 m³ available as surge volume for stormwater during rain events. Operational controls exist during storm events to preserve the capacity of the CWP which typically contains the sites most contaminated stormwater. This ensures that should an overflow occur, it will likely contain a lower concentration of contaminants. These controls are detailed in the Rain Event Strategy and include actions such as ceasing non-critical process tasks that generate wastewater and utilising the peripheral detention storages efficiently.

Should such an overflow occur, sampling is conducted from any point at which discharge of stormwater occurs and is analysed by a laboratory. Stormwater incidents are reported to the EPA in accordance with permit requirements.

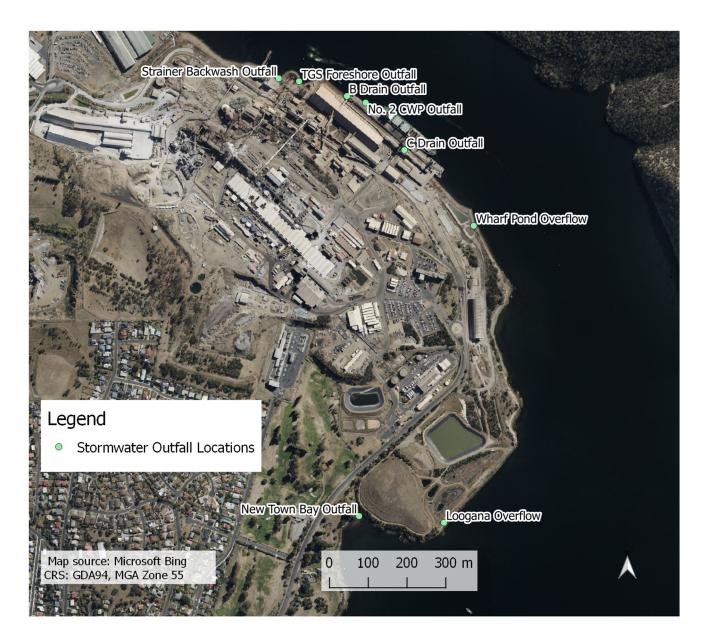


Figure 4-15 Surface water discharge monitoring locations – all points are emergency stormwater overflow points

4.2.3.3 Stormwater Results and Discussion

NH's regulatory obligations for stormwater monitoring relate to the identification of stormwater overflows which may have breached the provisions of The Permit.

Provision SW2 of The Permit identifies that NH may only discharge untreated stormwater during a critical duration storm event, with 0.2 annual exceedance probability (AEP), and that as far as reasonably practicable stormwater must only be discharged from nominated points (Figure 4-15). During the reporting period, untreated stormwater was discharged to the Derwent Estuary on four occasions. Three of the overflow events occurred where the stormwater arose from a critical duration storm event with an 0.2 AEP.

May 2022

During the period between 3:20 pm on 5 May 2022 and 08:30 am on 6 May 2022 the NH site recorded 100 mm of rainfall. Using the Bureau of Meteorology (BOM) Intensity-Frequency-Duration (IFD) estimations, the AEP for the rain event was calculated to be 0.05 (5%) at the time of the overflows, reaching 0.02 (2%) shortly after. The high volume of runoff generated during the rainfall event exceeded the capacity of the site stormwater catchment infrastructure, causing an overflow to the Derwent Estuary at 5 different locations. Metrics of the overflow are presented in the Table below.

Table 4-8 Stormwater Overflow Metrics 5 May 2022

Emission Point	Overflow volume estimate (m³)	Cadmium (mg/L)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)	TSS (mg/L)	TPH (μg/L)
Wharf area	240	0.359	0.232	1.89	21.5	306.7	870
B Drain Outfall	136	15.9	14.5	4.47	300	48	580
#2 CWP	1,808	16.9	45.4	4.8	279	36	<50
Substation 8	7.0	4.5	1.92	3.15	820	111	190
Strainer Backwash	7.2	3.18	0.356	0.171	518	33	<50

Actions completed following the event which could mitigate or prevent future events

- Investigate the purchasing of portable pumps for use during peak storm events
- Complete design for CWP sludge removal system
- Investigate options for redirecting Wharf Pond stormwater; and
- Clear spillway at the Wharf Ponds.

October 2023

During the period between 11:30 pm on 21 October 2023 and 05:30 am on 22 October 2023 the NH site recorded 30.3 mm of rainfall. The Hobart (Ellerslie Road) weather monitoring station recorded 31.4 mm. Using the Bureau of Meteorology (BOM) Intensity-Frequency-Duration (IFD) estimations, the AEP for the rain event was calculated to be 0.2 (20%) using site based data and 0.1 (10%) using Hobart BOM data. The high volume of runoff generated during the rainfall event exceeded the capacity of the site stormwater catchment infrastructure, causing an overflow to the Derwent Estuary at the B Drain Outfall. Metrics of the overflow are presented in the Table below.

Table 4-9 Stormwater Overflow Metrics 21-22 October 2023

Emission Point	Overflow volume estimate (m³)	Cadmium (mg/L)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)	TSS (mg/L)	TPH C6-C9 (mg/L)	TPH C10-C36 (mg/L)
B Drain Outfall	9	10.9	8.05	3.12	597	10	<0.02	0.18

Actions completed following the event which could mitigate or prevent future events

Order and replace pump in B3 sump with larger capacity pump.

December 2023

During the period between 8 pm on 13 December and 5 am on 14 December 2023 the NH site recorded 19.5 mm of rainfall. Using the Bureau of Meteorology (BOM) Intensity-Frequency-Duration (IFD) estimations, the AEP for the rain event was calculated to be greater than 0.5 (50%), but less than 0.2 (20%) using site-based data. Metrics of the overflow are presented in the Table below.

Table 4-10 Stormwater Overflow Metrics 14 December 2023

Emission Point	Overflow volume estimate (m³)	Cadmium (mg/L)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)	TSS (mg/L)	TPH C6-C9 (mg/L)	TPH C10-C36 (mg/L)
B Drain Outfall	7.5	36.3	2.81	11.2	336	211	<0.02	0.12

Actions completed following the event which could mitigate or prevent future events

- Replace capping on B2 Drain line to prevent B2 discharging into B3 catchment.
- Clean B2 Drain between Risdon Road and B2 Sump pit via high pressure water blasting.
- Review B2 drain line and replace pipework where required; and
- Fabricate and install overflow diversion infrastructure to prevent A1 drain discharging into B3 catchment during peak flow.

The replacement pump ordered as a result of the October 2023 event noted above had not yet arrived onsite at the time of this incident.

December 2024

On 7 December 2024, the NH site recorded 48.8 mm of rainfall. Using the Bureau of Meteorology (BOM) Intensity-Frequency-Duration (IFD) estimations, the AEP for the rain event was calculated to be greater than 0.2 (20%) using site-based data. Metrics of the overflow are presented in the Table below. The overflow occurred from a location at the Wharf that was not a nominated overflow point, and was therefore considered by the regulator to be non-compliant with condition SW2 of The Permit.

Table 4-11 Stormwater Overflow Metrics 7 December 2024

Emission Point	Overflow volume estimate (m³)	Cadmium (mg/L)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)	TSS (mg/L)	TPH C6-C9 (mg/L)	TPH C10-C36 (mg/L)
Wharf area	1.4	0.96	<0.1	0.36	20	< 5	<0.02	<0.1

Following this event, an open spoon drain which was partially obstructed with sediment was cleared. The partial blockage diverted stormwater into a low capacity sub-catchment of the Wharf Catchment. It is unclear if the overflow would have been prevented should the drain have been clear at the time of the rain event.

4.2.4 Groundwater

4.2.4.1 Groundwater Background

Significant soil and groundwater contamination has occurred across the site as a result of over 100 years of operations. Sources have included; leakage of process solutions in operational areas, ground infiltration of contaminated surface water, infiltration through stockpiled feedstocks and residues and leaks from above and below ground storage tanks and pipes. The majority of these sources have been eliminated, with work continuing to address current, known, ongoing sources.

Groundwater is monitored for relative standing water level (RSWL)/ hydraulic head and water quality across the site at all active monitoring bores and nine individual groundwater extraction systems.

All references to RSWL/hydraulic head is in meters above Australian Height Datum (AHD).

4.2.4.2 Groundwater Monitoring Program Details

Groundwater monitoring requirements are stipulated within The Permit. This includes the frequency of monitoring and the data collection required (Section GW4) and the specific bores requiring monitoring (Attachment 5).

A minimum of six monthly measurements of standing water level (SWL)/ depth to water (DTW) must be taken at all bores nominated within The Permit. Operational bores are shown within Figure 4-16. SWL/DTW is measured from the top of the bore casing to the top of the bore water. To calculate the hydraulic head/relative standing water level, the DTW value is subtracted from the surveyed top of casing elevation.

Each of nominated bores must be sampled to assess groundwater quality once every two years.

In April 2016, the sample frequency for many onsite bores was increased to obtain higher resolution data from areas deemed to be high risk, to ensure that emerging issues were recognised as early as possible. The following method, put forward by GHD (2012) to determine individual bore sampling frequency using a risk based approach was adopted:

- All bores with decreasing or stable contaminant trends and with concentrations below 1000 x the ANZECC (2000) guidelines for 80% protection of marine ecosystems (for any contaminant) are to be monitored on a biennial basis.
- All bores with decreasing or stable contaminant trends but with concentrations higher than 1000 x the ANZECC (2000) guidelines for 80% protection of marine ecosystems (for any contaminant) are to be monitored on an annual basis.
- All bores with increasing contaminant trends and with concentrations below 1000 x the ANZECC (2000) guidelines for 80% protection of marine ecosystems (for any contaminant) are to be monitored on an annual basis.
- All bores with increasing contaminant trends but with concentrations above 1000 x the ANZECC (2000) guidelines for 80% protection of marine ecosystems (for any contaminant) are to be monitored on a biannual basis.
- In the event of a paucity of data from an individual bore, the geographic location of the bore was also taken into account and if the location was deemed to be high risk (e.g. within the main operational footprint of the plant), the bore was assigned a biannual sampling frequency. It is the intention that the program will be reviewed each year as new data is collected and assessed.

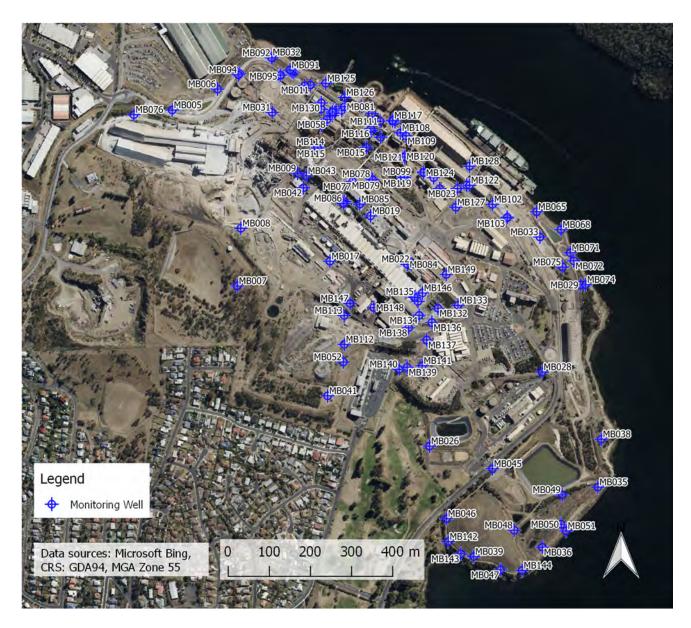


Figure 4-16 Groundwater monitoring borehole locations

4.2.4.3 Groundwater Results & Discussion

Standing Water Levels (SWLs)

SWL must be measured at a minimum, six monthly in all wells. The captured data is used to assess changes in groundwater levels over time, which may indicate:

- Sources or sinks in the system that could require investigation;
- Changes in the hydrogeological model for the site; and
- The performance of groundwater harvesting systems in creating hydraulic drawdown towards extraction locations.

Rainfall typically influences the hydraulic head within the unconfined aquifer onsite via infiltration, leading to aquifer recharge. In some monitoring locations, the hydraulic head within the deeper, semi confined system is also influenced by seasonal rainfall indicating a leaky upper boundary.

The measured hydraulic head across the reporting period is presented within the following pages, utilising data obtained during the summer monitoring round. Whilst some changes are apparent between the winter and summer monitoring programs, generally flow pathways are consistent across the two periods.

2022 Quarter 4

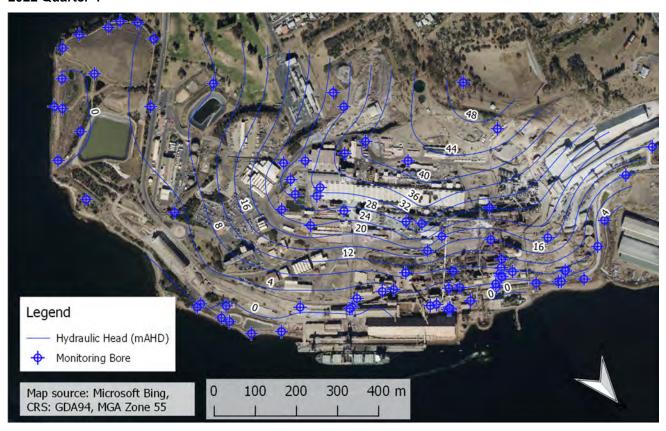


Figure 4-17 Hydraulic head within the shallow aquifer Q4 2022

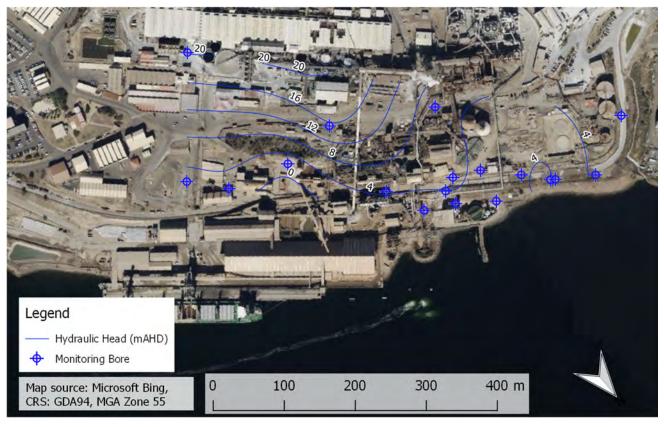


Figure 4-18 Hydraulic head within the semiconfined aquifer Q4 2022

2023 Quarter 4

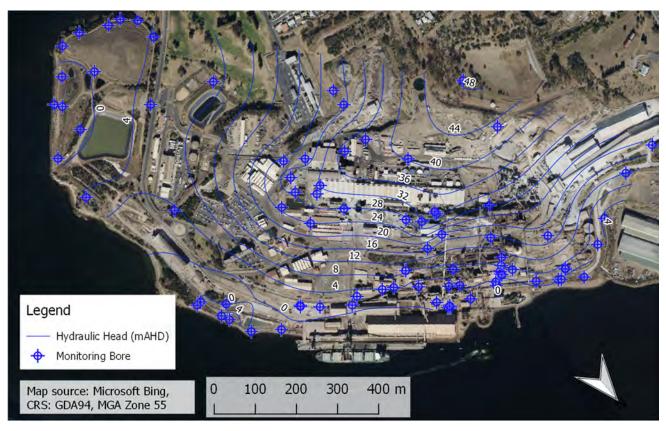


Figure 4-19 Hydraulic head within the shallow aquifer Q4 2023

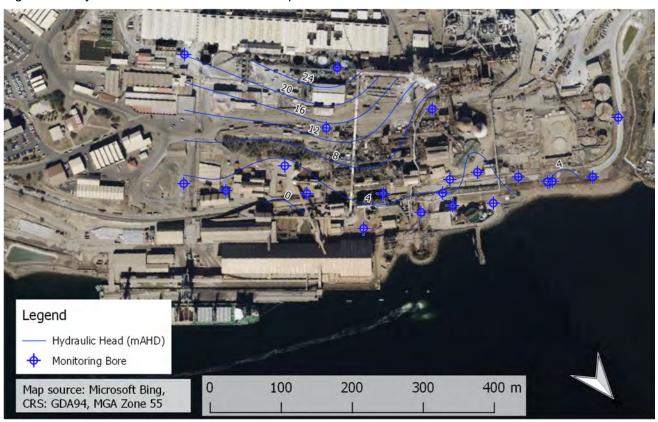


Figure 4-20 Hydraulic head within the semiconfined aquifer Q4 2023

2024 Quarter 4

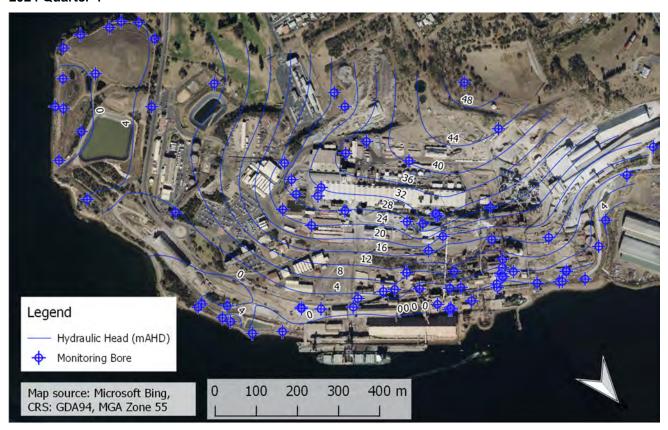


Figure 4-21 Hydraulic head within the Shallow Aquifer Q4 2024

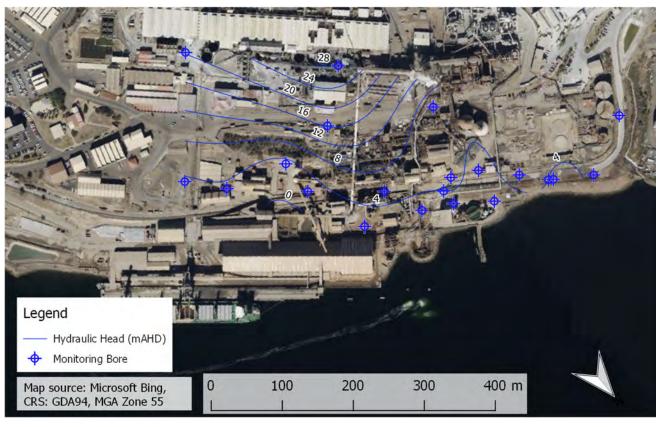


Figure 4-22 Hydraulic Head within the semiconfined aquifer Q4 2024

Groundwater Quality in Site Monitoring Bores

As per the requirements of The Permit as varied section GW5, groundwater quality across site is, at a minimum, measured biennially. Across the reporting period, the following sampling events took place:

- June 2022 sampling of 51 bores.
- November 2022 sampling of 80 bores.
- June/July 2023 sampling of 48 bores.
- November/December 2023 sampling of 115 bores.
- July 2024 sampling of 45 bores.
- November/December 2024 sampling of 77 bores.

Through the above sampling programs the mandatory frequency for bore sampling was achieved, each bore was sampled at or above the minimum frequency of once every two years, provided that access to the well was not restricted and the well remains in commission.

Spatial Distribution of Groundwater Contaminants

The distribution of contaminant concentrations within groundwater bores is depicted in the box and whisker plots on the following pages. The results have been segregated into three groups;

- Bores up hydrogeological gradient of operational departments;
- Bores located within the main operational footprint of the site, termed 'source' bores; and
- Down hydrogeological gradient, boundary bores.

Comparison of the datasets can be used to compare and contrast the distribution of contaminant concentrations in groundwater between; onsite bores situated within operational areas against up and down gradient bores.

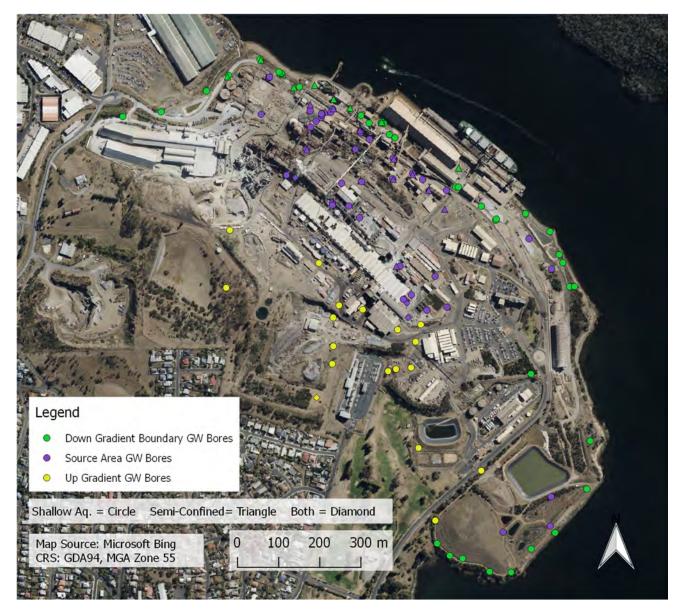


Figure 4-23 Groundwater monitoring bore locations, upgradient vs source area vs foreshore.

Data collected over the reporting period has been collated by calendar year and is presented within the three box and whisker plots below. The red line represents ANZECC (2000) guidelines for 80% protection in marine waters². Green line represents the laboratory limit of reporting (LOR)³.

² ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

³ Note that the LÓR may change for each analyte depending on the concentration of other substances present within the sample. The LOR presented in the chart is the lowest LOR within the grouped dataset.

Figure 4-24 Summary of groundwater quality in monitoring bores located up gradient (n=9), source areas (n=40) and bores located on the down gradient boundary (n=23) sampled during Q4 2022

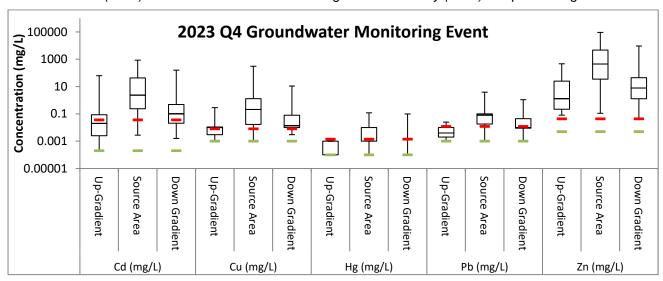


Figure 4-25 Summary of groundwater quality in monitoring bores located up gradient (n=17), source areas (n=56) and bores located on the down gradient boundary (n=42) sampled during Q4 2023

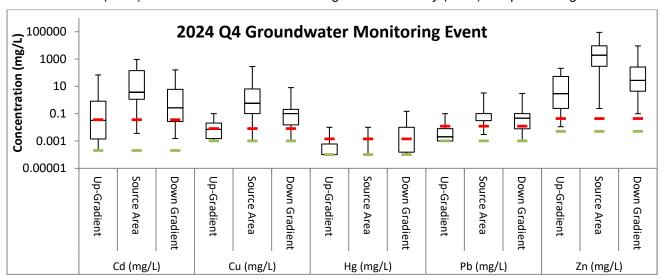


Figure 4-26 Summary of groundwater quality in monitoring bores located up gradient (n=11), source areas (n=40) and bores located on the down gradient boundary (n=26) sampled during Q4 2024

The distribution of results presented in the above charts was relatively consistent across the reporting period. The results plotted in the figures above, found that typically the concentration of contaminants was greatest within source area bores within the sites main operational footprint. Generally, the concentration of contaminants was found to be lower, down hydrogeological gradient. Whilst the concentrations are still elevated, it is promising to see the decline in levels along the downgradient boundary. This general reduction in contaminant concentrations indicates that the groundwater extraction programs operating across the site are likely assisting in reducing the mass of contaminants being discharged into the Derwent Estuary via groundwater seepage. The concentration of metals within up-gradient bores was found to be elevated beyond what one may expect to be background levels. This is likely due to varied land usage over the course of the operation of the site. Whilst current land usage may indicate that the bore is situated up-gradient of operational areas, historical use of that area of land may have put it within what could be deemed to be an operational area.

Contaminant Concentration Mapping

Within the following pages, several figures have been prepared indicating the concentration of individual metal contaminants within groundwater across the site. The data originates from groundwater samples collected during the Q4 2023 sampling event. This monitoring event was selected as it was numerically the most comprehensive sampling round completed during the reporting period, where 115 bores were sampled. The following images display the relative concentration of contaminants within both the interpreted shallow (circle) and deep (triangle) aquifers. Colour scaling is relative to the 80% species protection criteria, with order of magnitude intervals. As such, locations marked in dark blue are below the 80% species protection criteria.

Cadmium

The mapped concentration of cadmium, measured in the site's monitoring bores is presented below. The spatial distribution of cadmium within groundwater is consistent with previous reporting periods. The main hotspot identified is the area surrounding and down gradient of the Leach and Purification Department. Elevated cadmium is also encountered within the Loogana area, likely as a result of the historical stockpiling and washing of Leach residues in unlined stockpiles between the 1930's and 1990's.

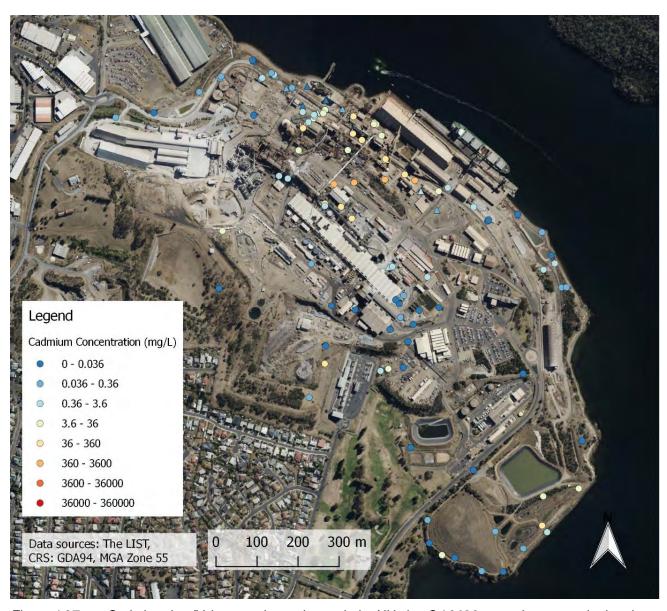


Figure 4-27 Cadmium (mg/L) in groundwater beneath the NH site, Q4 2023 groundwater monitoring data

Copper

The mapped concentration of copper, measured in the site's monitoring bores during the 2023 Q4 monitoring round is presented below. Generally, the greatest concentrations of copper are found to be down gradient of the Purification department, where copper is removed from process solution as copper sulphate.

The concentration of copper was also found to be elevated at both the upriver end (MB9 and MB43) and downriver end (MB22, MB84 MB146) of the electrolysis department. The cause of this is unknown, as copper is removed from the hydrometallurgical circuit down gradient of these locations and it is therefore unlikely to result from process solution leaking to ground. The most plausible explanations are the result of the historical practices of utilising process residues as fill, or disposing of copper pickling liquor to ground.

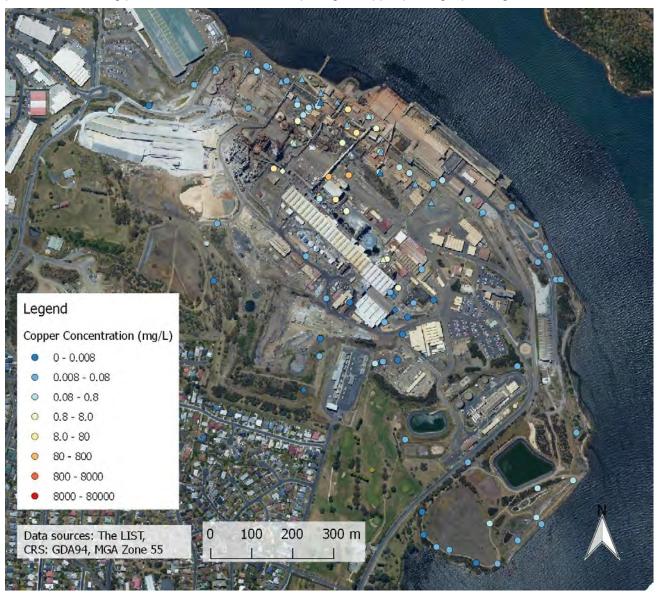


Figure 4-28 Copper (mg/L) in groundwater beneath the NH site, Q4 2023 groundwater monitoring data

Mercury

The distribution of mercury within groundwater across the site is presented within the figure below. Generally, mercury concentrations within groundwater bores were found to be below the 80% species protection criteria across site, with only seven wells identifying concentrations above 0.0014 mg/L. There were however 20 samples where the limit of reporting (LOR) was 0.01 mg/L. In this instance for the purposes of mapping the LOR was taken to be the actual value which has resulted in the dot being shaded mid-light blue on the map below.

The wells where the mercury concentration was above the LOR and the 80% species protection criteria were all in the northern section of the site, surrounding either current or historical Acid Plant locations. The results are consistent with previous years.

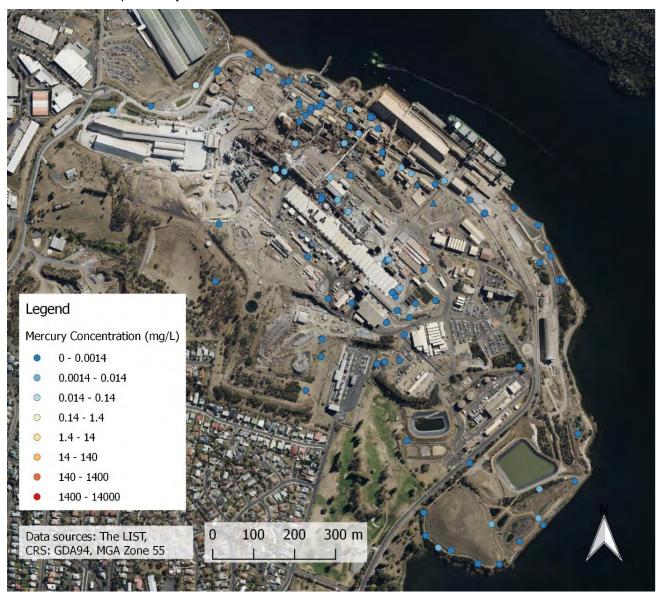


Figure 4-29 Mercury (mg/L) in groundwater beneath the NH site, Q4 2023 groundwater monitoring data

Lead

The concentration of lead within groundwater bores during the Q4 2023 groundwater monitoring event is presented within the figure below.

Concentrations are typically greatest within areas down hydrogeological gradient of the Leach department, where lead is removed from the hydrometallurgical circuit. The majority of wells exhibit lead concentrations within two orders of magnitude of the 80% species protection criteria. The results presented below are consistent with previous reporting periods.

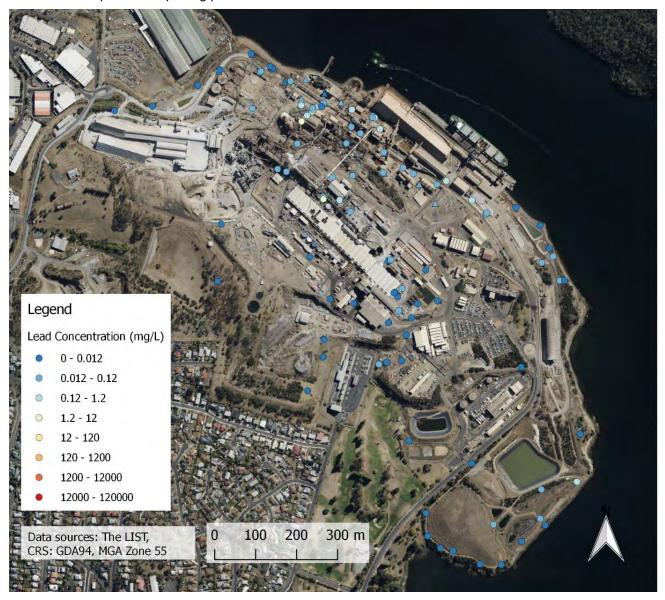


Figure 4-30 Lead (mg/L) in groundwater beneath the NH site, 2023 Q4 groundwater monitoring data

Zinc

The concentration of zinc within bores sampled during the 2023 Q4 monitoring campaign is presented in the figure below. Generally speaking, monitored concentrations diminish with distance from the operational areas of Electrolysis and Leach/Purification. Elevated concentrations were also identified within the Loogana area. These results are consistent with previous monitoring rounds.

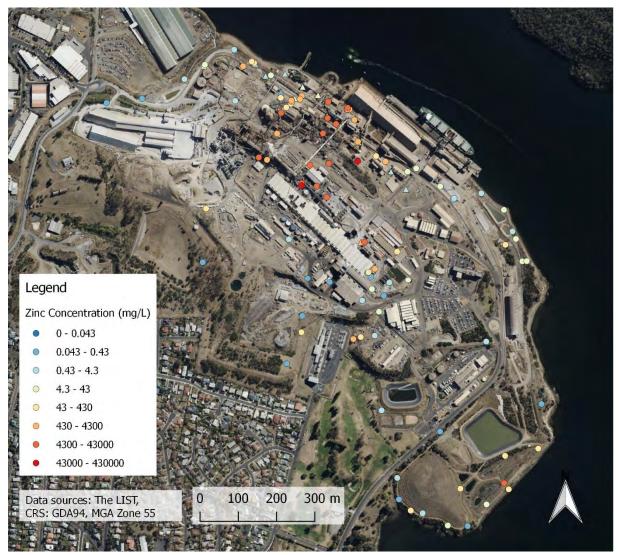


Figure 4-31 Zinc (mg/L) in groundwater beneath the NH site, 2023 Q4 groundwater monitoring data

In general, the mapped concentrations presented within the figures above indicate that the areas subject to the most significant contamination appear to be within and down hydrogeological gradient of the Electrolysis Department. This area includes the Leach/Purification Departments. These three operational departments operate in a hydrometallurgical circuit, whereby roasted concentrates (calcine) are dissolved and metals are sequentially removed from solution.

Relative to unroasted concentrates, process solution poses a much greater risk to groundwater contamination, as metals are dissolved in acidic solution, rather than being present as a relatively insoluble metal sulphide.

Historical Trends in Groundwater Quality

As a means to identify statistically significant trends in groundwater quality, a Mann-Kendall analysis has been adopted to not only identify a positive or negative trend, but also provide a measure of the confidence in the strength of the trend.

The Mann-Kendall analysis stands out as a popular method in environmental studies for detecting consistent upward or downward trends, commonly referred to as monotonic trends in datasets collected over time, particularly when data deviates from the bell curve of normal distribution. This statistical test is highly regarded for its robustness, as it maintains its reliability even when outliers are present. Outliers can often distort the results of more assumption-dependent tests, but the Mann-Kendall analysis is designed to withstand such anomalies, which is useful when examining extensive environmental datasets where abnormal values occasionally arise.

Despite its strengths, the Mann-Kendall analysis does have certain limitations. One such limitation is the treatment of all changes between data points as equal, regardless of their actual magnitude. For example, in the context of monitoring contaminant concentrations, a minor increase of 1% is given the same consideration as a more substantial, perhaps more significant, increase of several orders of magnitude. This equal weighting can lead to underestimation of the importance of large shifts in data, which may be critical in identifying emerging contaminant sources through trend assessment. Despite this limitation, Mann-Kendall analysis is a versatile and robust choice for trend analysis.

The table on the following pages provides a summary of the Mann-Kendall analysis of all site wells sampled in the assessment period (accessible and in service), provided a minimum number of 4 samples have been collected. The analysis has been confined to cadmium, copper and zinc as based on the data presented in the previous section, these metals were found to be the most significant contaminants, relative to ANZECC (2000) guidelines for 80% species protection in marine waters.⁴

In order to assess relatively recent trends in groundwater quality, the analysis has been restricted to samples collected during both the current reporting period of 2022-2024 but also the previous period of 2019-2021. This approach has been adopted in an attempt to identify changes in groundwater quality relative to the previous reporting period. Excluding older data will remove any bias introduced to the dataset from trends apparent 20 years ago which have since been rectified.

Any statistical tool used for trend analysis requires a determination of what level of confidence is required to determine whether the observed trend in the data is statistically significant or if it could have occurred by random chance. When conducting a Mann-Kendall test, the null hypothesis is that there is no trend, meaning that any variation or trend is not related to time, rather simply related to random chance. Statistical test methods such as Mann-Kendall calculate a probability value. This p-value is then used to accept or reject the null hypothesis. The analysis adopted as part of this assessment has adopted p-value thresholds of:

- P=<0.05, there is a less than 5% chance that the observed trend could have occurred due to random variation alone. In other words, when this condition is satisfied, a statistically significant trend has been identified and an 'increasing' or 'decreasing' trend in the 8 most recent data points for the selected location will be recorded.
- P=0.1-0.05, there is between 5 and 10% chance that the identified trend is due to random variation alone. In this circumstance the trend will be noted as a 'probably increasing' or 'probably decreasing'.
- P=>0.1, there is a greater than 10% chance that any trend or variation is due to random chance. In this situation, 'no trend' will be placed within the summary table.

_

⁴ ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Table 4-12 Mann-Kendall trend analysis for select contaminants in groundwater

Sample	Ca	Cadmium		Copper		Zinc	Interpreted
Loc.	p-val	Trend	p-val	Trend	p-val	Trend	Aquifer
MB005		Insufficient Data		Insufficient Data		Insufficient Data	Shallow
MB006	0.042	Increasing	0.174	No Trend	0.174	No Trend	Shallow
MB007		Insufficient Data		Insufficient Data		Insufficient Data	Shallow
MB008	0.573	No Trend	0.26	No Trend	0.06	Probably Increasing	Shallow
MB009	0.022	Decreasing	1	No Trend	0.144	No Trend	Shallow
MB011	0.014	Decreasing	0.806	No Trend	0.014	Decreasing	Shallow
MB012	0.095	Probably Decreasing	0.466	No Trend	0.211	No Trend	Shallow
MB013	0.091	Probably Decreasing	0.188	No Trend	0.707	No Trend	Shallow
MB015	0.325	No Trend	0.655	No Trend	0.929	No Trend	Shallow
MB017	0.042	Decreasing	0.174	No Trend	1	No Trend	Shallow
MB019	0.297	No Trend	0.095	Probably Decreasing	0.144	No Trend	Shallow
MB022	0.01	Decreasing	0.052	Probably Decreasing	0.161	No Trend	Shallow
MB023	0.011	Decreasing	0.035	Decreasing	0.011	Decreasing	Shallow
MB026	1	No Trend	0.308	No Trend	0.174	No Trend	Shallow
MB028	0.042	Decreasing	0.174	No Trend	0.174	No Trend	Shallow
MB029	0.327	No Trend	0.142	No Trend	0.624	No Trend	Shallow
MB031	0.368	No Trend	0.035	Decreasing	0.133	No Trend	Shallow
MB032		Insufficient Data		Insufficient Data		Insufficient Data	Shallow
MB033	0.089	Probably Increasing	0.308	No Trend	1	No Trend	Shallow
MB035	0.131	No Trend	0.583	No Trend	0.064	Probably Increasing	Shallow
MB036	0.392	No Trend	0.161	No Trend	0.001	Decreasing	Shallow
MB038	0.881	No Trend	0.176	No Trend	0.881 No Trend		Shallow
MB039	0.02	Decreasing	0.016	Decreasing	0.531 No Trend		Shallow
MB041		Insufficient Data		Insufficient Data	Insufficient Data		Both
MB043	0.677	No Trend	0.211	No Trend	0.917	No Trend	Both

Sample	Ca	admium	Copper		Zinc		Interpreted	
Loc.	p-val	Trend	p-val	Trend	p-val	Trend	Aquifer	
MB045	0.621	No Trend	0.386	No Trend	0.458	No Trend	Shallow	
MB046	0.297	No Trend	0.917	No Trend	0.835	No Trend	Shallow	
MB047	0.602	No Trend	0.754	No Trend	0.917	No Trend	Shallow	
MB048	0.276	No Trend	0.01	Decreasing	0.161	No Trend	Shallow	
MB049	0.815	No Trend	0.312	No Trend	0.586	No Trend	Shallow	
MB050	0.001	Decreasing	0.034	Decreasing	0.005	Decreasing	Shallow	
MB051	0.945	No Trend	0.034	Decreasing	0.891	No Trend	Shallow	
MB052	0.573	No Trend	0.091	Probably Decreasing	0.452	No Trend	Shallow	
MB053	0.016	Increasing	0.009	Increasing	0.009	Increasing	Shallow	
MB054		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB055	0.012	Decreasing	0.152	No Trend	0.049	Decreasing	Shallow	
MB057	0.002	Decreasing	0.012	Decreasing	0.002	Decreasing	Shallow	
MB058	0	Decreasing	0.025	Decreasing	0.001	Decreasing	Shallow	
MB059	0.755	No Trend	0.087	Probably Increasing	0.436	No Trend	Shallow	
MB060	0.805	No Trend	0.536	No Trend	1	No Trend	Shallow	
MB061	0.624	No Trend	0.624	No Trend	0.142	No Trend	Shallow	
MB062	0.003	Decreasing	0.245	No Trend	0.003	Decreasing	Shallow	
MB063	0.029	Decreasing	0.061	Probably Decreasing	0.009	Decreasing	Shallow	
MB065	0.707	No Trend	0.091	Probably Decreasing	0.851	No Trend	Shallow	
MB068	0.386	No Trend	0.174	No Trend	0.621	No Trend	Shallow	
MB071	0.142	No Trend	0.327	No Trend	0.327	No Trend	Shallow	
MB072		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB074	0.497	No Trend	0.497	No Trend	1	No Trend	Shallow	
MB075	0.024	Decreasing	0.007	Decreasing	0.004	Decreasing	Shallow	
MB076		Insufficient Data		Insufficient Data	Insufficient Data		Shallow	
MB077	0.047	Decreasing	0.273	No Trend	0.337	No Trend	Shallow	
MB078	0.174	No Trend	1	No Trend	0.497	No Trend	Deep	
MB079	0.003	Increasing	0.025	Increasing	0	Increasing	Shallow	

Sample	Ca	admium	C	Copper	Zinc		Interpreted	
Loc.	p-val	Trend	p-val	Trend	p-val	Trend	Aquifer	
MB080	0.174	No Trend	0.497	No Trend	0.042	Increasing	Deep	
MB081	0.174	No Trend	0.089	Probably Decreasing	0.308	No Trend	Deep	
MB083	0.007	Increasing	0.128	No Trend	0.049	Increasing	Shallow	
MB084	0.881	No Trend	0.293	No Trend	0.051	Probably Increasing	Deep	
MB085	0.21	No Trend	0.929	No Trend	0.655	No Trend	Shallow	
MB086	0.293	No Trend	0.051	Probably Decreasing	0.176	No Trend	Shallow	
MB087		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB088	0.086	Probably Decreasing	0.086	Probably Decreasing	0.624	No Trend	Deep	
MB089	0.532	No Trend	0.144	No Trend	0.532	No Trend	Shallow	
MB090	0.308	No Trend	0.089	Probably Decreasing	0.089	Probably Decreasing	Deep	
MB091	0.917	No Trend	0.144	No Trend	0.835	No Trend	Shallow	
MB092		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB093	0.089	Probably Increasing	0.308	No Trend	0.497	No Trend	Shallow	
MB094		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB095	0.221	No Trend	0.327	No Trend	0.327	No Trend	Shallow	
MB096	0.014	Decreasing	0.05	Decreasing	0.05	Decreasing	Shallow	
MB097	0.174	No Trend	0.042	Decreasing	0.042	Decreasing	Shallow	
MB098		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB099	0.039	Decreasing	0.26	No Trend	0.573	No Trend	Shallow	
MB100	0.06	Probably Decreasing	0.452	No Trend	0.015	Decreasing	Shallow	
MB101	0.026	Increasing	0.386	No Trend	0.138	No Trend	Shallow	
MB102	0.573	No Trend	0.851	No Trend	0.091	Probably Increasing	Shallow	
MB103	0.142	No Trend	0.624	No Trend	0.327	No Trend	Shallow	
MB104	0.011	Decreasing	0.133	No Trend	0.133	No Trend	Shallow	
MB105	0.851	No Trend	0.452	No Trend	0.348	No Trend	Shallow	

Sample	Cadmium		Copper			Zinc	Interpreted	
Loc.	p-val	Trend	p-val	Trend	p-val	Trend	Aquifer	
MB106	0.497	No Trend	0.042	Decreasing	0.497	No Trend	Shallow	
MB107		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB108	0.327	No Trend	1	No Trend	0.142	No Trend	Shallow	
MB109		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB110	0.175	No Trend	0.404	No Trend	0.095	Probably Increasing	Shallow	
MB111		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB112	0.042	Decreasing	0.089	Probably Decreasing	0.042	Decreasing	Shallow	
MB113		Insufficient Data		Insufficient Data		Insufficient Data	Shallow	
MB114	0.902	No Trend	0.621	No Trend	0.216	No Trend	Shallow	
MB115	0.06	Probably Increasing	0.707	No Trend	0.039	Increasing	Deep	
MB116		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB117		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB118	0.297	No Trend	0.754	No Trend	0.144	No Trend	Shallow	
MB119	0.042	Decreasing	0.174	No Trend	0.497	No Trend	Deep	
MB120	0.573	No Trend	0.133	No Trend	0.851	No Trend	Shallow	
MB121	1	No Trend	0.221	No Trend	0.142	No Trend	Deep	
MB122	0.327	No Trend	0.462	No Trend	1	No Trend	Shallow	
MB123	0.142	No Trend	0.624	No Trend	0.806	No Trend	Shallow	
MB124		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB125	0.327	No Trend	0.086	Probably Decreasing	0.624	No Trend	Deep	
MB126	0.26	No Trend	0.133	No Trend	0.851	No Trend	Deep	
MB127	0.221	No Trend	0.086	Probably Decreasing	0.806	No Trend Deep		
MB128		Insufficient Data		Insufficient Data		Insufficient Data	Deep	
MB129	0.174	No Trend	0.734	No Trend	1	No Trend	Deep	

Sample	Cadmium		Copper			Zinc	Interpreted
Loc.	p-val	Trend	p-val	Trend	p-val	Trend	Aquifer
MB130	0.089	Probably Decreasing	0.089	Probably Decreasing	0.089	Probably Decreasing	Deep
MB131		Insufficient Data		Insufficient Data		Insufficient Data	Deep
MB132	0.276	No Trend	0.02	Decreasing	0.243	No Trend	Shallow
MB133	0.754	No Trend	0.917	No Trend	0.297	No Trend	Shallow
MB134	0.076	Probably Increasing	0.466	No Trend	0.118	No Trend	Both
MB135	0.851	No Trend	0.707	No Trend	0.039	Decreasing	Both
MB136	0.297	No Trend	0.095	Probably Decreasing	0.095	Probably Decreasing	Shallow
MB137	0.26	No Trend	0.06	Probably Decreasing	0.348	No Trend	Shallow
MB138	0.099	Probably Decreasing	0.368	No Trend	0.881	No Trend	Shallow
MB139	0.806	No Trend	0.086	Probably Decreasing	0.806	No Trend	Shallow
MB140	0.091	Probably Decreasing	0.348	No Trend	0.091	Probably Decreasing	Shallow
MB141	0.26	No Trend	0.133	No Trend	1	No Trend	Shallow
MB142	1	No Trend	0.462	No Trend	1	No Trend	Shallow
MB143	0.014	Increasing	1	No Trend	0.624	No Trend	Shallow
MB144	0.624	No Trend	0.327	No Trend	0.327	No Trend	Shallow
MB145	0.174	No Trend	1	No Trend	0.174	No Trend	Both
MB146	0.624	No Trend	0.624	No Trend	1	No Trend	Shallow
MB147	0.624	No Trend	0.221	No Trend	0.624 No Trend		Shallow
MB148	0.624	No Trend	0.086	Probably Decreasing	0.624 No Trend		Shallow
MB149	1	No Trend	0.142	No Trend	0.624	No Trend	Shallow
MB150	0.327	No Trend	0.142	No Trend	0.142	No Trend	Shallow

Trend status identified via the Mann-Kendall analysis is discussed in the following pages.

Cadmium



Figure 4-32 Mann-Kendall Analysis – Cadmium concentration in groundwater.

Trend analysis identified the following trends relative to cadmium concentrations in groundwater across site bores:

- 6 wells were found to have an increasing trend;
- 4 well was found to have a probably increasing trend;
- 7 wells were found to have a probably decreasing trend;
- 20 wells were found to have a decreasing trend;
- 66 wells were found to have no statistically significant trend; and
- There was insufficient data from 20 wells for analysis.

The spatial distribution of wells with an increasing or potentially increasing trend for cadmium were found to be largely focused on areas down hydrogeological gradient of the current and historical Leach/Purification Plant where cadmium is removed from impure solution.

Cadmium concentration within wells exhibiting an increasing trend is presented in the figure below.

Error bars are included on the chart for results where the reported result was below the laboratory limit of reporting. The error bar extends to the limit of reporting and the plotted result, which is 10% of the limit of reporting.

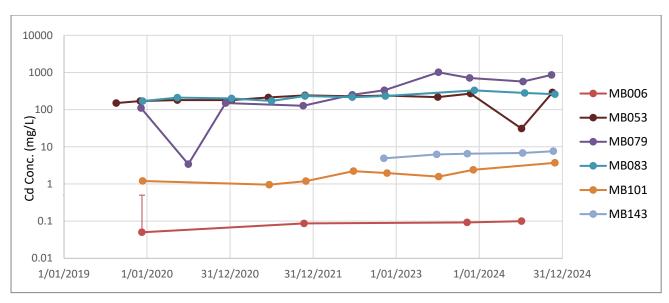


Figure 4-33 Cadmium concentrations in wells exhibiting an increasing trend

Reviewing the plotted trend for MB06 in light of the error bar demonstrates a limitation of any form of trend analysis where a particular value is unknown due to the analysed result falling below the laboratory limit of reporting. In this instance, the reported result for 10 December 2019 was <0.5 mg/L. Should the actual concentration of cadmium in this sample have been 0.4 mg/L, no statistical trend (p=>0.1) would have been identified.

When undertaking this trend analysis, Nyrstar have adopted the relatively conservative approach of utilising 10% of the limit of reporting as the reported value for trend analysis. In 2020, Nyrstar changed analytical laboratories in order to achieve lower analytical limits of reporting.

Copper

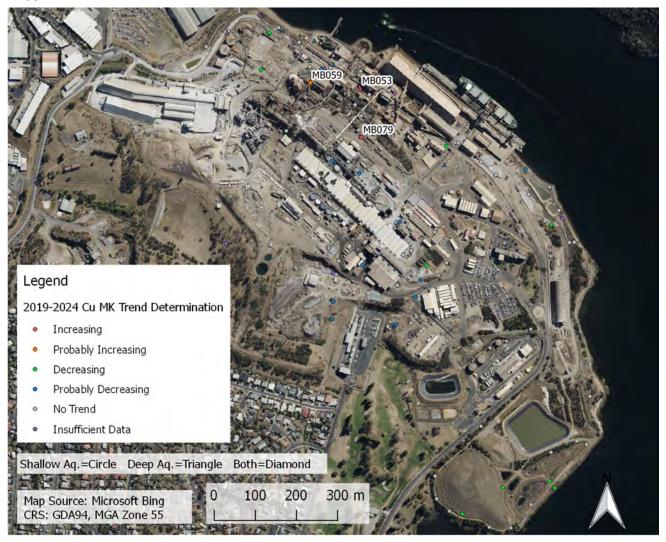


Figure 4-34 Mann-Kendall Analysis – Copper concentration in groundwater.

Trend analysis identified the following trends relative to copper concentrations in groundwater across site bores:

- 2 wells were found to have an increasing trend;
- 1 wells were found to have a probably increasing trend;
- 17 wells were found to have a probably decreasing trend;
- 13 wells were found to have a decreasing trend;
- 70 wells were found to have no statistically significant trend; and
- There was insufficient data from 20 wells for analysis.

The locations where an increasing trend in copper has been identified are consistent with those displaying a similar positive trend for cadmium – down hydrogeological gradient from the Leach/Purification Department.

Copper concentration within wells exhibiting an increasing trend is presented in the figure below.

Error bars are included on the chart for results where the reported result was below the laboratory limit of reporting. The error bar extends to the limit of reporting and the plotted result, which is 10% of the limit of reporting.

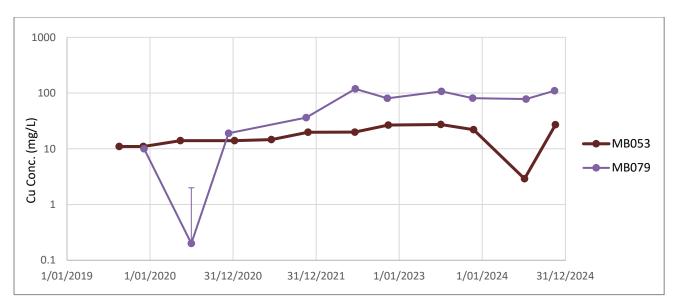


Figure 4-35 Copper concentrations in wells exhibiting an increasing trend

Whilst there is evidence to suggest that the concentration of copper is increasing with a small number of site wells, 40 wells were found to have a statistically significant negative trend, indicating a general improvement in groundwater quality with regards to copper across much of the site. Some of these areas include the Loogana area, where leach residues were washed and stockpiled and the historical leaching plant which has long been regarded as one of the most heavily contaminated areas of the site.

Zinc

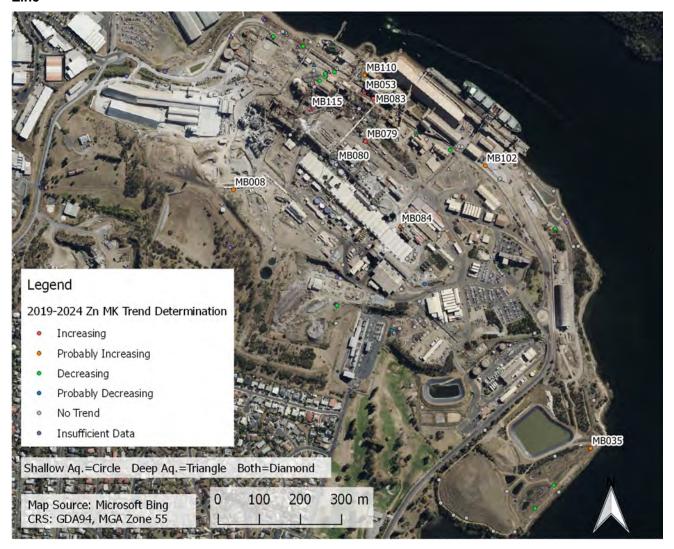


Figure 4-36 Mann-Kendall Analysis – Zinc concentration in groundwater.

Trend analysis identified the following trends relative to zinc concentrations in groundwater across site bores:

- 5 wells were found to have an increasing trend;
- 5 well was found to have a probably increasing trend;
- 4 wells were found to have a probably decreasing trend;
- 15 wells were found to have a decreasing trend;
- 74 wells were found to have no statistically significant trend; and
- There was insufficient data from 20 wells for analysis.

The location of nearly all wells identifying an increase in zinc concentration were found to be down hydrogeological gradient from the Electrolysis Department. Five of these locations are also down gradient of the Purification Department.

Zinc concentration within wells exhibiting an increasing trend is presented in the figure below.

Error bars are included on the chart for results where the reported result was below the laboratory limit of reporting. The error bar extends to the limit of reporting and the plotted result, which is 10% of the limit of reporting.

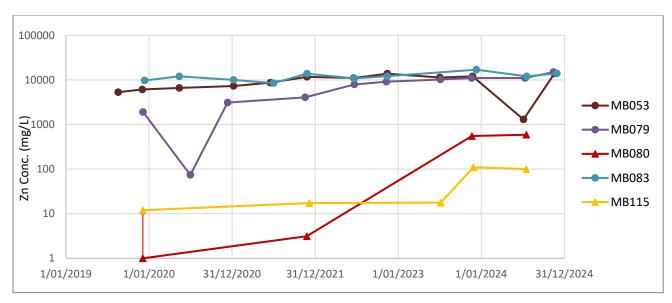


Figure 4-37 Zinc concentrations in wells exhibiting an increasing trend

The concentration of zinc identified within MB80 and MB115 over the past two monitoring rounds indicates the source is likely to be 'Pure Solution', which is the zinc sulphate solution fed into the electrolytic cells within the Electrolysis Department. This is due to the step change in zinc concentration in the absence of similar increases in either copper or cadmium.

Comparison of Results Relative to Previous Monitoring Period

Monitoring data presented within the previous sections have demonstrated that whilst there are levels of contaminants present within groundwater beyond 80% Marine Ecosystem Protection Levels, the concentration of these contaminants are generally much lower within foreshore monitoring wells where groundwater is discharging into the Derwent Estuary.

Positive/increasing trends have been identified within some wells, indicating ongoing or relatively new sources however, there is a large body of evidence to suggest that as a whole - groundwater quality has improved over the last two reporting periods across much of the site.

The figure below demonstrates the spatial distribution of wells where statistically significant contaminant trends have been identified. An explanation of the figure is provided below.

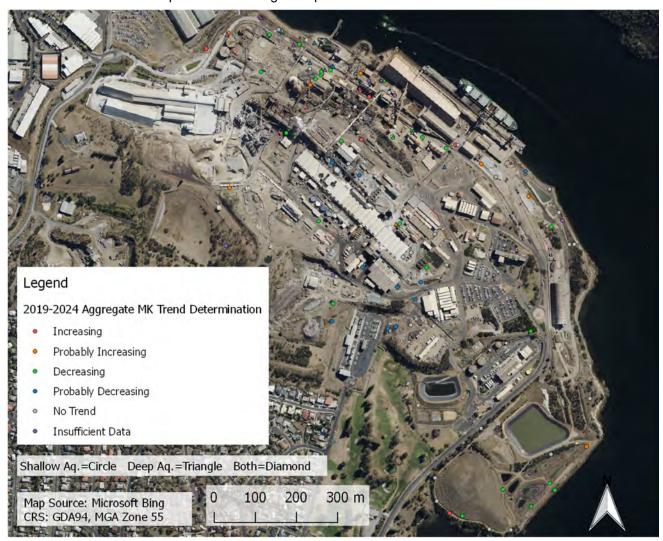


Figure 4-38 Mann-Kendall Analysis – Aggregate contaminant concentration in groundwater.

The figure above is an amalgamation of the three similar figures presented in the previous section. If a positive trend has been identified for one contaminant and a decreasing trend has been identified for another within the same well, the positive trend will be assigned and plotted. Similarly a trend with more statistical significance, determined via a lower p-value will be displayed in preference to one with a higher p-value. Adoption of these rules enables a simplistic assessment of contamination change over time. This protocol has identified:

- 8 wells were found to have an increasing trend;
- 9 wells were found to have a probably increasing trend;
- 18 wells were found to have a probably decreasing trend;
- 29 wells were found to have a decreasing trend;
- 39 wells were found to have no statistically significant trend; and
- There was insufficient data from 20 of the wells for statistical analysis.

The relatively small lateral footprint where increasing trends have been identified will expediate remedial efforts, enabling a more targeted approach, both in terms of ongoing source elimination and secondary source removal.

Of the 103 wells with sufficient data for trend analysis, the fact that 47 of these wells demonstrated a statistically significant trend indicating that contaminant concentrations are either declining, or likely to be declining is a noteworthy finding.

Contaminant concentrations remain elevated in the area down hydrogeological gradient of the historical Leaching Department, however trend analysis indicates that contaminant concentrations within groundwater are declining. Similarly, in the area down gradient of both the historical and current acid plants, groundwater quality was found to either be improving, or 'probably' improving.

Whilst there has been a reduction in contaminant concentrations across areas of the site following land use changes, such as those two noted above it is promising to see a reduction in contaminant concentrations in the upriver section of the operational Leach Plant. Trend analysis indicates the improvement in groundwater quality extends across both the shallow and deeper aquifer.

Groundwater Recovery

Groundwater is recovered from strategic locations and targets known hot spots of contamination across the site in accordance with the Groundwater Management Strategy. Ten groundwater extraction systems have been established, each are detailed in the sections below.

The location of each extraction system is identified within Figure 4-39 and Figure 4-40.

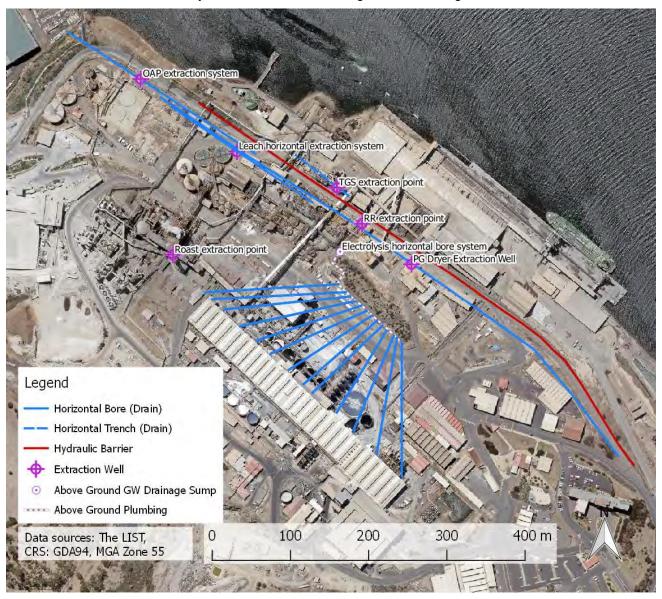


Figure 4-39 Location of operational site area groundwater extraction systems

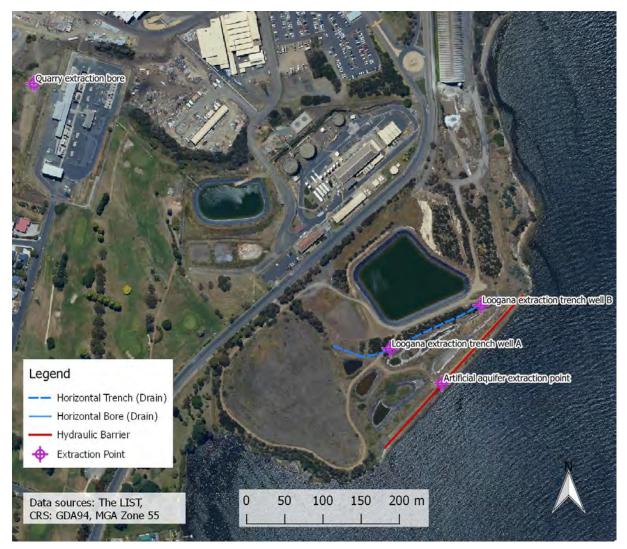
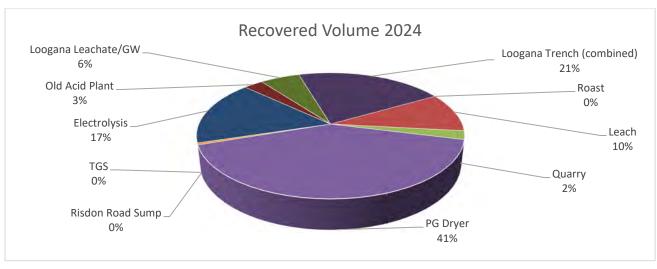


Figure 4-40 Location of southern groundwater recovery systems

All extracted groundwater reports to the Contaminated Water Ponds, prior to treatment within the Effluent Treatment Plant to remove heavy metals prior to discharge through the permitted foreshore outfall point or is recycled within the plant following reverse osmosis filtration.

The established recovery systems continue to deliver good performance throughout the reporting period, however many of the extraction pumps experienced extended periods of downtime. The recovered volume and metal load for the reporting period is shown in Table 4-13. For comparison purposes, the previous sampling periods are also included.


Table 4-13 Summary of estimated loads extracted from groundwater recovery points during both the current and previous reporting period

Year	Volume (m³)	Zinc (kg)	Cadmium (kg)
2024 CY Total	36,424	93,274	5,813
2023 CY Total	32,358	90,455	4,249
2022 CY Total	49,011	125,369	3,007
2021 CY Total	33,193	92,251	1,909
2020 CY Total	39,152	83,323	1,682
2019 CY Total	41,713	82,575	1,966

The table below summarises the performance of each extraction system throughout the reporting period. The figures on the following page present the recovery from 2024 pictorially. An overview of each extraction system is presented in the following pages however it can be seen within the table and figures below that the vast majority of metal recovery occurs within the Electrolysis Horizontal Bore system.

Table 4-14 Groundwater abstraction per system

Extraction System	Volume (m3)			Zinc (kg)			Cadmium (kg)		
Oystem	2022	2023	2024	2022	2023	2024	2022	2023	2024
Roast	122	-	-	-	-	-	-	-	-
Leach	3,771	6,012	3,656	3,352	6,875	3,759	25	51	31
Quarry	16	649	805	1	43	46	0	20	21
PG Dryer	20,464	5,454	14,887	36,474	8,181	21,131	502	98	260
Risdon Road Sump	-	-	-	-	-	-	-	-	-
TGS	118	242	173	35	82	65	1	2	1
Electrolysis	6,684	6,089	6,090	59,883	56,259	54,156	2,166	3,857	5,334
Old Acid Plant	886	2,435	1,010	429	765	271	1	2	1
Loogana Leachate/GW	4,333	3,000	2,069	5,827	4,608	3,632	50	39	31
Loogana Trench (combined)	12,527	8,477	7,734	19,194	13,642	10,213	261	180	135

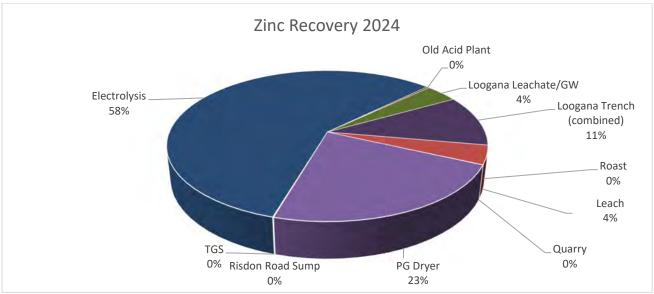


Figure 4-41 Relative yield of individual groundwater extraction systems

Roast Vertical Extraction Bore (EB01)

The Roast extraction bore is a 300 mm diameter well installed in August 2000, 40.5 m into dolerite bedrock with a 28.5 m long, 150 mm diameter screen. The location of the system relative to local monitoring bores and modelled hydraulic head (2024 Q4) within the unconfined aquifer is presented in the figure below.

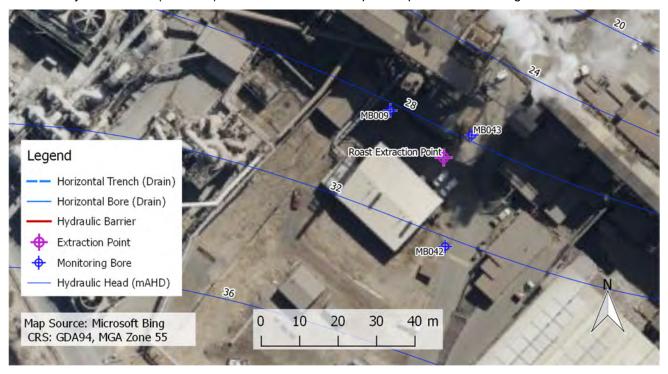


Figure 4-42 Location of the Roast Vertical Extraction Bore

The concentration of zinc within abstracted water from the system is presented in the chart below alongside monitoring data collected from two observation wells in the near vicinity, MB09 and MB43. Generally a reduction in zinc concentration was observed from 2001 until 2020. From 2020 onwards concentrations within both extracted water and samples collected from monitoring wells surrounding the extraction system appear to have increased. In April 2022, the pump within the extraction bore failed due to becoming bogged in silt, preventing removal for maintenance. Some attempts to recover the pump and return the bore to operation were undertaken in 2023, further attempts will be undertaken in 2025.

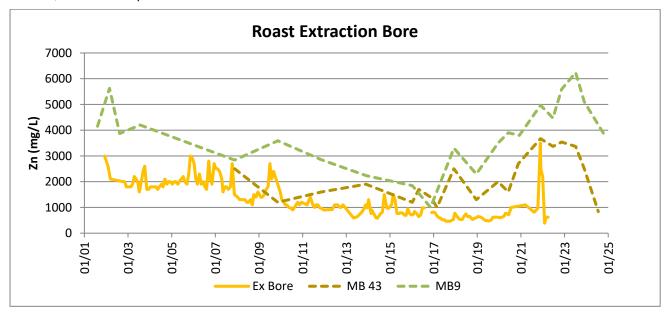


Figure 4-43 Zinc in groundwater surrounding the Roast Vertical Extraction Bore

Leach Horizontal Extraction Bore (EB02)

The Leach extraction bore is a 16 m deep, 380 mm diameter bore, intersecting the horizontally drilled groundwater drain that extends approximately 220 m in a northwest/southeast direction below the Neutral Leaching section and Mercury Removal Plant to the northwest and the Paragoethite section to the southeast. The horizontal collection drain lies within dolerite and extends towards, but does not intersect the contact with the Triassic sandstone to the southeast. The typical depth of the horizontal drain is approximately 5 m below sea level, approximately 16 m below ground level at the extraction point. The 112 mm open hole collection drain was installed in June/July 2001, while the vertical extraction point was installed prior to this in May 2001.

The location of the extraction system relative to local monitoring bores and modelled hydraulic head (2024 Q4) within the unconfined aquifer is presented in the figure below.

Figure 4-44 Leach Extraction Bore layout

The concentration of zinc within abstracted groundwater and water within proximal monitoring wells is presented in Figure 4-45 below. Since the commissioning date, the concentration of zinc within extracted water has generally declined over time at a relatively consistent rate. In 2002 the observed concentration of zinc within abstracted water was typically found to be 4000-5000 mg/L, however this has declined to 1000-2000 mg/L by the end of 2024.

The concentration of zinc within groundwater abstracted from EB02 is considerably lower than up gradient monitoring wells MB15 and MB57, whist generally remaining higher than MB60. This indicates the bulk of the zinc flux is likely occurring along the southeastern extent of the bore.

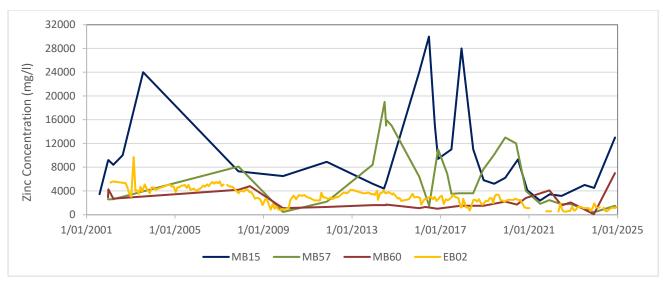


Figure 4-45 Long term zinc in groundwater concentration – Leach Extraction System area

The groundwater yield of the system varied throughout the reporting period. Seasonable variability and pump reliability accounts for some variation, however the commissioning of EB05, discussed in greater detail later within this report is chiefly responsible for the reduction in yield.

Monthly groundwater abstraction for the two systems is presented in the graph below. In the January 2018 to January 2021 period, the mean abstraction rate from EB02 was 700 m³ per month. This reduced significantly during the commissioning phase of EB05 to the point where EB02 ran dry in early 2022.

From May 2023 until December of that year, EB05 was inoperable, which lead to a step change increase in volumetric yield from EB02 to a point where it approached 700 m³ per month. This finding is not unexpected, as the expected capture zone for EB02 is expected to be similar to that of the northwestern extent of EB05.

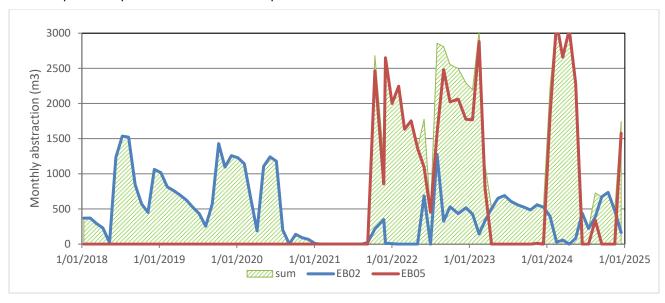


Figure 4-46 Groundwater extraction rates, EB02 and EB05

Loogana-Inshallah Seawall System and Recovery Trench System

Commissioned in 1998, the Loogana-Inshallah seawall extraction system is comprised of a groundwater pump, coupled with a 278 m long bentonite grout seawall acting as a hydraulic barrier, preventing the migration of groundwater into New Town Bay. The hydraulic head on the landward side of the cut-off wall is maintained below that of the seaward side, ensuring the hydraulic gradient falls towards the pumping system, rather than New Town Bay. The layout of the system is provided in Figure 4-47.

During the construction of the Loogana Dam in 2013-2014, a groundwater recovery trench was installed with a linear length of approximately 250 m, situated between the newly constructed stormwater dam and the Loogana wetlands. The installation of the extraction trench creates a hydraulic sink within the centre of the Loogana area, establishing a hydraulic flow towards the collection system, reducing the volume of contaminated groundwater that may discharge into New Town Bay. The potentiometric surface, based on hydraulic head observations within monitoring bores taken during Q4 2024 is presented in the figure below. Whilst there are relatively few wells across the approximately 9 ha area, it is apparent within the modelled surface below that there is an area of depression towards the centre of the Loogana area.

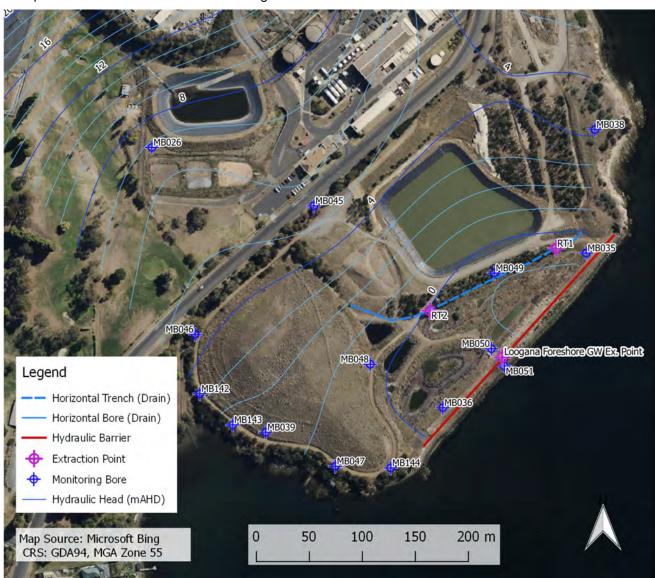


Figure 4-47 Loogana Cut-off wall and Collection Sump

The concentration of metals within groundwater recovered from the Loogana-Inshallah foreshore cut off wall system was relatively low throughout the reporting period, other than a sporadic increases found in March 2023 and August 2024. Groundwater quality within the shallow aquifer has been steadily improving since 2010, This can be seen within Figure 4-48 below as a reduction in metal load within extracted water.

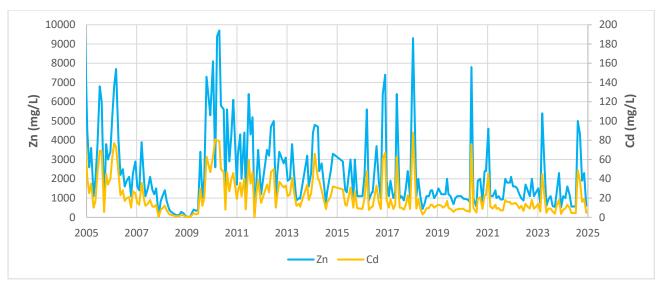


Figure 4-48 Metal concentrations in groundwater extracted from the Loogana-Inshallah recovery system The concentration of zinc and cadmium within groundwater recovered from the Loogana Dam Trench is presented in Figure 4-49 below. Axis have been kept consistent with the above graph for comparison. Throughout the reporting period, the concentration of both zinc and cadmium generally declined within RT2

(Trench Well A) and remained relatively consistent within RT1 (Trench Well B). 10000 200 9000 180



Figure 4-49 Metal concentrations within groundwater extracted from the Loogana Dam Recovery Trench

Risdon Road Sump Extraction System

The Risdon Road Sump includes a vertical extraction well situated within a shallow excavated sump. The layout of the extraction system is presented within the figure below, overlain with modelled hydraulic head within the unconfined aquifer, using measurements taken from the Q4 2024 monitoring round.



Figure 4-50 Risdon Road Sump Extraction System

Safe access to the extraction system was lost in July 2021. The contaminant load within groundwater extracted from the Risdon Road Extraction System has been steadily decreasing over the past 20 years. This can be clearly seen within Figure 4-51 below. The system did not operate during the reporting period.

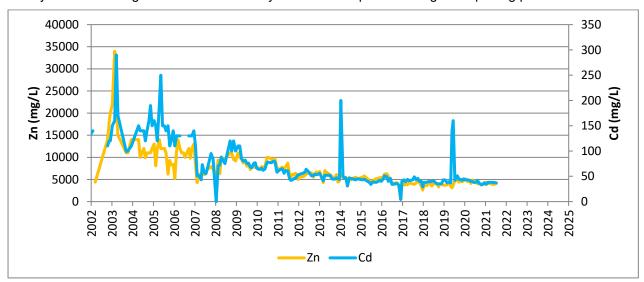


Figure 4-51 Metal concentrations in groundwater extracted from the Risdon Road Sump recovery system

Tail Gas Scrubber Extraction Trench

The Tail Gas Scrubber extraction system comprises of a trench approximately 80 m long excavated typically 1-2 m below ground surface. A drainage pipe lies at the base, surrounded with coarse gravelly fill. A sump approximately 2.5 m in depth acts as a collection point for groundwater extraction. The system, commissioned in 2001 targets the unconfined aquifer onsite, as the collection trench largely sits within poorly consolidated sediments or fill over the underlying dolerite. The layout of the extraction system is presented within the figure below, overlain with modelled hydraulic head within the unconfined aquifer, using measurements taken from the Q4 2024 monitoring round.

Figure 4-52 Location of Tail Gas Scrubber Trench Extraction System

The concentration of contaminants in recovered groundwater reduced significantly in October 2021, coinciding with pre-commissioning pumping trials within EB05 situated on the up hydrogeological gradient side of the hydraulic barrier, displayed in the figure above. Despite the intermittent operation of EB05 since this time, the concentration of both cadmium and zinc has not returned to that encountered prior to the operation of EB05.

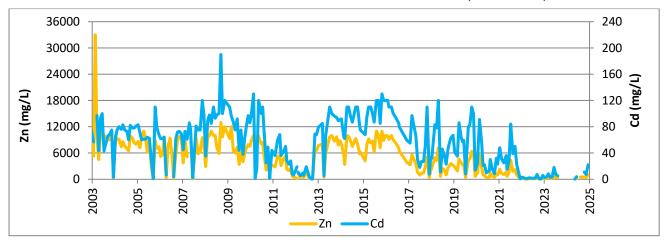


Figure 4-53 Metal concentrations in groundwater extracted from the TGS Extraction System

Electrolysis Horizontal Extraction Bores

In 2008, 13 horizontal bores were drilled with an inclination of approximately 0.7 degrees from the horizontal in a fan-like manner extending from the historical leaching section of the Site towards the operational Electrolysis Department. Each of the bores are connected via a manifold to a common drain and flows via gravity to the site Contaminated Water System. The location of the extraction system relative to local monitoring bores and modelled hydraulic head (2024 Q4) within the unconfined aquifer is presented in the figure below.

Figure 4-54 Location of Electrolysis Finger Bores

The modelled hydraulic head presented in the above figure indicates the extraction system may be inducing hydraulic drawdown in the vicinity of MB85. The drawdown may not be as apparent within the southern bores, 7 through 13 as they are primarily installed within the Triassic sandstone unit which generally has a lower permeability than the Jurassic dolerite. This observation is supported by typically greater groundwater drainage/extraction rates in the northern finger bores.

As mentioned above, groundwater from each of the individual bores drains to a common manifold, prior to discharging to the sites contaminated water system. The concentration of zinc, cadmium and copper in the common drainage is presented in the graph below.

The concentration of zinc has been increasing steadily from approximately 6000 mg/L in mid-2016, to approximately 8000 mg/L at the end of 2024. Cadmium concentrations have demonstrated greater relative variation since the extraction system was commissioned. In February 2023, the concentration of cadmium more than doubled without an associated increase in zinc or copper.

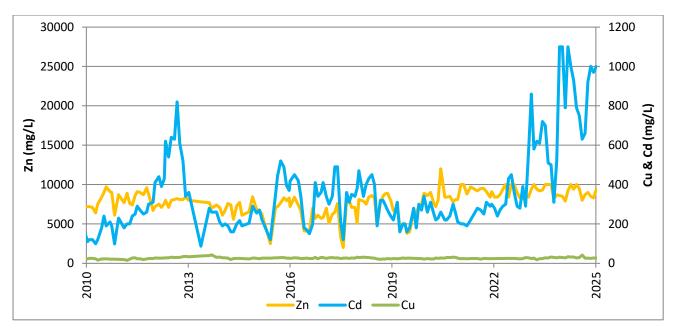


Figure 4-55 Metal concentrations in groundwater extracted from the combined Electrolysis Horizontal Bore System

Cadmium is removed from the hydrometallurgical circuit within the Secondary Purification stage within the Purification Department. This is achieved via a cementation step followed by filtration, sluicing and further multistep filtration in order to produce a cadmium sulphate solution, free of other metals. An increase in cadmium concentrations within groundwater without an associated increase in zinc or copper indicates that the source of the cadmium contamination is likely to be associated with a loss of containment within the Secondary Purification stage within the footprint of the Purification Department. At the time of reporting, an assessment of bunds and sumps within the Purification Department was in progress.

Quarry Vertical Extraction Bore (EB03)

The Quarry Vertical Extraction Bore was installed in 2010 to a total depth of 28.6 m below ground surface. The bore is located down hydraulic gradient of a historical dolerite quarry that has been used as a storage repository for contaminated soil and contaminated timber, resulting from various demolition projects that have occurred at the site. The layout of the extraction system is presented within the figure below, overlain with modelled hydraulic head within the unconfined aquifer, using measurements taken from the Q4 2024 monitoring round.

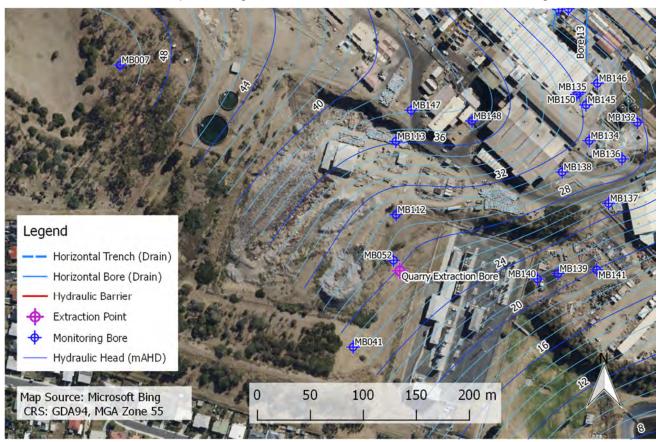


Figure 4-56 Location of the Quarry Vertical Extraction Bore

Results from the Quarry Bore reveal no discernible trends during the current, or previous reporting periods. Statistically significant decreasing trends were identified within surrounding wells MB52 and MB112. The Quarry bore recovers the lowest mass of zinc of all operable extraction systems onsite.

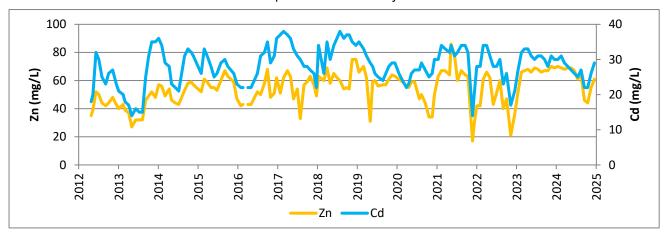


Figure 4-57 Metal concentrations in groundwater extracted from the Quarry recovery system

Old Acid Plant Horizontal Extraction Bore (EB04)

The Old Acid Plant Horizontal Extraction Bore, as the name suggests lies directly down gradient of a section of the Site previously occupied by the lead chamber acid plants (1917-1948), Number 1, 2 (1948-1981) 3 & 4 (1958-1992) Contact Sulphuric Acid Plants. The bore was constructed to extend the capture zone of groundwater along the site frontage at a depth of approximately 5 m below sea level, the same typical depth as the Leach Horizontal Extraction System. The bore was drilled from the neighbouring INCAT property and follows a roughly parabolic path, with an extraction well intersecting the horizontal path at the lowest section of the curve. The layout of the extraction system is presented within the figure below, overlain with modelled hydraulic head within the unconfined aquifer, using measurements taken from the Q4 2024 monitoring round.

Figure 4-58 Location of Old Acid Plant Extraction System

The concentration of both zinc and cadmium within abstracted water is presented in the figure below. The increase in both zinc and cadmium concentrations apparent within 2018 is considered to be a result of the use of the emergency acid bund located immediately up gradient of the horizontal bore to temporarily store neutral leach liquor from late 2017 to mid-2018. This practice has since been abandoned and the issues with the emergency bund rectified. The concentration of zinc and cadmium have since been declining, indicating that the cause of the concentration spike has largely been resolved. Statistical analysis presented pictorially in Figure 4-58 above indicates that groundwater quality is generally improving within the capture zone of this extraction system.

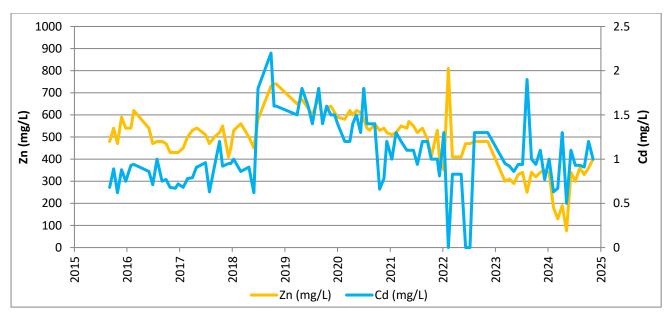


Figure 4-59 Metal concentrations in groundwater extracted from the Old Acid Plant Extraction System

PG Dryer Extraction Well (EB05)

The PG Dryer Extraction System includes a 730 m long pressure-injected grout curtain and a directionally drilled groundwater drain, approximately 750 m in length. These two components were installed from early 2020 through to mid-2021.

The grout curtain is located on the fringe of the natural shoreline, acting as a hydrogeological barrier. The function of the curtain is twofold:

- Retarding the flow of groundwater between contaminant source zones (the production areas on site)
 and the down hydrogeological gradient receptor the Derwent Estuary
- Impeding saltwater incursion into the extraction zone of influence.

The layout of the extraction system is presented within the figure below, overlain with modelled hydraulic head within the unconfined aguifer, using measurements taken from the Q4 2024 monitoring round.

Figure 4-60 Location of PG Dryer Extraction System

The curtain itself was constructed via the drilling of bore holes, with a grout mix injected into void sealing the horizontal and vertical fractures through which groundwater travels. Each hole was advanced to a nominal depth of 30 m below ground surface.

Following the completion of the grout curtain, the horizontal bore was drilled up hydrogeological gradient of the curtain, to collect the groundwater 'dammed' by the grout curtain.

The horizontal collection drain is 140 mm wide, and is intersected by a 600 mm vertical extraction well from where the groundwater is pumped to the site's contaminated water circuit.

The concentration of zinc and cadmium within abstracted water is displayed in the figure below. Breaks in the plotted concentration lines indicate periods of pump inactivity. Generally, the concentration was found to be relatively consistent, at approximately 1800 mg/L zinc and 20 mg/L cadmium.

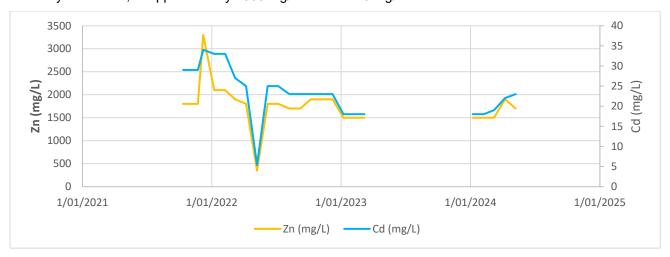


Figure 4-61 Metal concentrations in groundwater extracted from the PG Dryer Extraction System

On 3 February 2022 the pump was operating at $3.87~\text{m}^3/\text{h}$. At this abstraction rate, monitored head within the extraction well remained constant. This observation indicates that on this day, inflow into the extraction system matched the discharge. It is expected that inflow into the extraction system will fluctuate at steady state due to seasonal variation, however the observation indicates that the predicted stabilised yield of $83~\text{m}^3/\text{d}$ was relatively close to the measured yield of $93~\text{m}^3/\text{d}$.

Since the commissioning of the extraction system, pump reliability has been a cause of concern. Investigations indicate one issue is the accumulation of solids, believed to be residual drilling fluid exiting the formation and adhering to pump components, as seen in the figure below. Electronic scale inhibition technology was trialed during the reporting period however this did not yield the desired results.

In March 2023, the pump experienced an electrical malfunction internally. Persistent electrical, mechanical and instrumentation issues have hindered the operational capabilities of the extraction system. The system was restarted in December 2024.

Figure 4-62 EB05 pump components. Left; inlet to foot valve. Right; one of the three impellers

4.3 Receiving Waters

4.3.1 Water Quality Monitoring

4.3.1.1 Water Quality Monitoring Background

NH interacts with the Derwent Estuary in a number of ways, including:

- Estuarine water extraction for tail gas scrubbing;
- Effluent discharged from the tail gas scrubbers and effluent treatment plant (ETP); and
- Passive discharge of contaminated groundwater.

NH is a key member of the Derwent Estuary Program (DEP). The DEP was established in 1999 as a partnership between state and local government and industry partners (NH, Norske Skog, Entura (Hydro Tasmania) and TasWater) to provide a management framework for the restoration and protection of the Derwent Estuary. NH has a strong involvement in the program through collaborative monthly monitoring, attendance at regular taskforce meetings and commitment of resources and funding.

NH monitors the potential impact of site operations by sampling estuarine water quality and estuarine benthic sediments in accordance with The Permit. The receiving water quality and sediment sampling program is integrally linked with the NH estuarine biota monitoring program (refer Section 4.3.2– Biota).

To assess the impact of the point source discharge from the site, NH maintains a mixing zone sampling program around the permitted discharge point at the foreshore outfall (Figure 4-63). The aim of this program is to confirm that sufficient dilution of effluent has occurred within the mixing zone in order to meet Tasmanian State Water Quality Objectives at the boundary of that zone. Sampling sites within the mixing zone were used to define the mixing zone in 2001.

Figure 4-63 Point source mixing zone boundary

NH monitors pH levels monthly at the boundary of the defined mixing zone to ensure the minimum pH requirement of 7.0 (as the indicator of dispersion) is being met in accordance with permit requirements (refer to Table 4-15).

Table 4-15 River Monitoring program parameters

Emission point / monitoring location	Monitoring and sampling frequency	Monitoring parameters	Regulatory limits that must not be exceeded	Reporting
Derwent Estuary interim mixing zone boundary	Monthly Minimum of four samples at boundary locations likely to be impacted by mixing plume.	рН	Not less than pH 7 under any degree of influence of NH treated waste water	Annually *
Water quality: U3, U4, U5, U7, PWB, NTB1, NTB2, NTB5	Monthly	Zn, Cd, Hg, TSS, Cu, Pb	None specified	Annually *
New Town Bay sediments: NTB01, NTB02, NTB08, NTB10, NTB12	Annually	Zn, Cd, Hg	None specified	Annually *

^{*} If results indicate non-compliance with regulatory limits, reporting must be within 24 hours of monitoring results becoming available. Report on an annual basis via Annual Environmental Review.

4.3.1.2 Water Quality Monitoring Program Details

Water grab samples are collected monthly in the Derwent Estuary from two depths: 0.1 m below the water surface and 1 m above the estuary floor (benthos). The monitoring sites are shown in Figure 4-64 and Figure 4-65. Samples are analysed at a NATA certified laboratory for total zinc, cadmium, mercury and suspended solids.

Results for these parameters are assessed with respect to ANZECC guidelines⁵ using the 80% protection level for highly disturbed ecosystems as given in Table 4-16.

Additional physio-chemical field measurements (pH, salinity, temperature and dissolved oxygen) are taken using a MiniSonde™ Hydrolab at 1 m intervals through the water column starting at the water surface.

Monitoring is conducted in accordance with the procedure Estuarine Sampling (HP-826-00731), which includes duplicate sampling and field blanks for quality control purposes and ensures compliance with relevant Australian Standards.⁶.

Sediment samples are collected annually at five NTB locations, with sampling protocols also outlined in the estuarine sampling procedure. Sediment grab samples are collected using a pipe dredge, which samples the top 3–4 cm of sediment.

Samples are sent to the NH laboratory for analysis of total zinc, total cadmium and total mercury. Results are viewed with respect to the ANZECC guidelines for sediment quality given in Table 4-16.

⁵ Australian and New Zealand Environment and Conservation Council, Australian Water Quality Guidelines for Fresh and Marine Waters, 2000.

⁶ AS/NZS 5667.9; 1998 Water Quality – Sampling, Part 9; Guidance on Sampling from Marine Waters and Part 12; Guidance on Sampling of Bottom Sediments.

Table 4-16 ANZECC water quality guidelines for marine waters (2000)

Analyte	Sedi	Water	
	Effects range low (adverse effects 10% of the time) mg/kg	Effects range high (adverse effects 50% of the time) mg/kg	80% protection level μg/L
Total zinc	200	410	43
Total cadmium	1.5	10	36
Total mercury	0.15	1	1.4
Total Copper	65	271	8
Total Lead	50	220	12

Figure 4-64 Derwent Estuary water quality monitoring sites

Figure 4-65 New Town Bay water and sediment quality monitoring sites

4.3.1.3 Water Quality Monitoring Results & Discussion

Ambient Water Quality Monitoring

The monthly surface water quality monitoring across the 2022-2024 reporting period showed typically higher heavy metal concentrations in surface waters in comparison to benthic samples at New Town Bay (NTB) sites, with less stratification evident in the estuary proper (Figure 4-66). This pattern of metal concentration has been evident since monitoring began.

Average zinc concentrations across all estuarine monitoring sites were found to be below the ANZECC 80% protection level trigger value of 43 μ g/L at both surface and depth, with respective surface and depth values of 42.23 μ g/L and 20.16 μ g/L (2022), 35.15 μ g/L and 16.92 μ g/L (2023), and 35.93 μ g/L and 19.60 μ g/L (2024). There is a reasonable consistency in the average surface sample concentrations year on year with a standard deviation of 3.88 μ g/L within the reporting period. The average depth sample concentration was also relatively consistent with a standard deviation of 1.75 μ g/L between 2022 and 2024. These results show greater variation than the 2019-2021 reporting period (2.38 μ g/L and 0.65 μ g/L surface and benthic respectively).

The average zinc concentration at surface level at NTB sites was 65.26 $\mu g/L$, this has increased when compared to both previous sampling period (50.99 $\mu g/L$ 2019-2021) and the past 10 year average (53.09 $\mu g/L$ 2015-2024). These levels exceed the guideline value of 43 $\mu g/L$. During the reporting period, NTB01 readings

exceeded guidelines on 20 out of 33 occasions, NTB02 on 29 of 33 occasions, NTB05 on 24 of 33 occasions and NTB13 on 25 of 33 occasions. NH will continue to monitor and assess these sites and determine if further assessment is required in order to manage the increased surface zinc concentrations. Concentration levels at depth at NTB were found to be considerably lower than those recorded at the surface. At NTB sites a 5.44 μ g/L increase in average benthic zinc concentration sites from the 2019-2021 reporting period was observed.

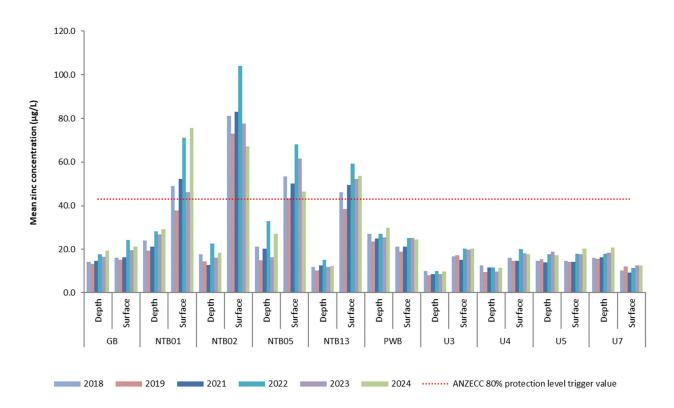


Figure 4-66 Total zinc in surface and bottom water quality samples at estuarine monitoring sites

As depicted in Figure 4-67, there was a significant increase in Total Suspended Solids (TSS) from 2021 to 2022 at most monitoring sites, both at depth and surface. This was followed by a decrease in 2023 and a small increase in 2024. Depth samples at NTB02, NTB13, U3 and U4 did not follow this trend, showing only minor change from 2021 to 2022, and an increase from 2023 to 2024. Surface samples at U3 and U5 showed a small decrease from 2023 to 2024. Overall we observe an average surface TSS of 4.40 mg/L at surface and 4.10 mg/L at depth, the 10 year average (2015-2024) is 4.98 mg/L and 5.09 mg/L respectively, indicating an overall downward trend for TSS.

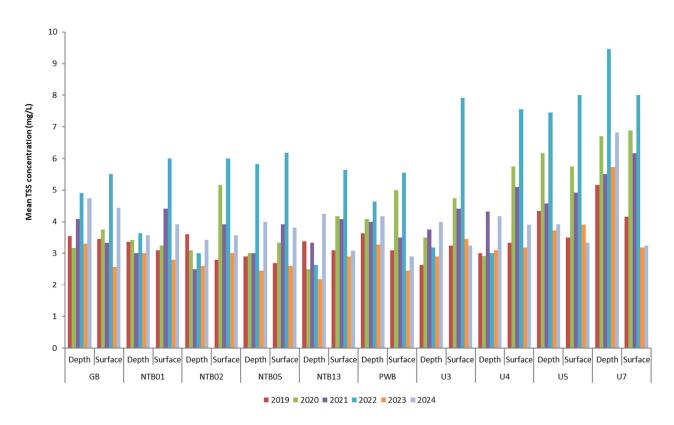


Figure 4-67 Total TSS in surface and bottom water quality samples at estuarine monitoring sites

Mercury, copper, cadmium and lead are monitored monthly in line with the River Monitoring program parameters (refer Table 4-15). The following instances where metals were recorded above the laboratory limit of reporting (LOR) and ANZECC 80% protection level trigger value are listed below, results from the 2019-2021 reporting period are included for comparison.

In the 2022-2024 reporting period mercury levels above the LOR (0.05 $\mu g/L$) were recorded on three occasions, all occurring at U7. None of these exceeded 0.07 $\mu g/L$, and thus were all well below the guideline of 0.15 $\mu g/L$. In the 2019-2021 period, there were two detects, one of which exceeded the guideline.

Of the 30 reports of copper above the LOR (2 μ g/L) in the reporting period, there were five exceedances of the guideline value (8 μ g/L), two of these occurred at NTB02 at depth, (11 μ g/L 20/12/2022 and 176 μ g/L 22/02/2024), one occurred at PWB (11 μ g/L 21/02/2023), one at U3 (14 μ g/L 21/02/2023) and one at GB (16 μ g/L 19/03/2024). In the 2019-2021 period, there were 20 detects, two of which exceeded the guideline.

Lead was detected above the LOR and guideline of 12 μ g/L at depth at U4 on 17/01/2023 with a value of 15 μ g/. In the 2019-2021 reporting period no samples were detected above LOR.

No cadmium was detected above LOR at any monitored site in the 2022-2024 reporting period, a decrease from two detects in the 2019-2021 period.

Point Source Discharge: Mixing Zone pH

Routine monthly sampling of pH is undertaken at the mixing boundary zone. The yearly pH results demonstrate that during normal plant operating conditions, adequate dispersion of foreshore scrubber outfall (FSO) effluent is being achieved at the boundary of the mixing zone under all monitored tidal and plant operations. The pH ranged between 7.0-8.2 at the upstream and downstream boundaries of the mixing zone during the 2022-2024 reporting period.

New Town Bay Sediment Quality

Results from annual monitoring of NTB sediment samples in relation to past years are shown in Figure 4-68 to Figure 4-70.

Routine sampling since 2000 has shown concentrations of zinc, mercury and cadmium in NTB sediments to be substantially higher than the ANZECC guidelines. Despite this, testing carried out by DEP.⁷ in 2007, has shown that although heavy metal contamination in estuarine sediments is high in NTB, heavy metals are typically chemically bound to the sediment or other organic materials and are not usually biologically available (hence the lower heavy metal content in bottom water in the bay as compared to surface waters).

The source of these contaminants was also shown to be predominantly historical contamination, although fugitive dust, diffuse groundwater inflows and point source inflows do currently add to the bound and soluble metal levels within the estuary.

Results from the annual sampling program indicated that total zinc, mercury and cadmium levels all showed some variability with no observable definitive trends through time.

In a recent report published in 2020 by DEP⁸, it was notably reported that sediment coring and surface sediment sampling from a site adjacent to NH found decreased zinc concentrations to 13% of the recorded historical maximum for this location. Overall, the testing gave evidence that zinc and lead concentrations were steadily decreasing, indicating the successful reduction efforts in reducing metal-contaminated effluent entering the estuary since the 1970s. This could likely be contributed to the gradual burial of metal-contaminated sediments along with other NH actions to reduce metal input loads.

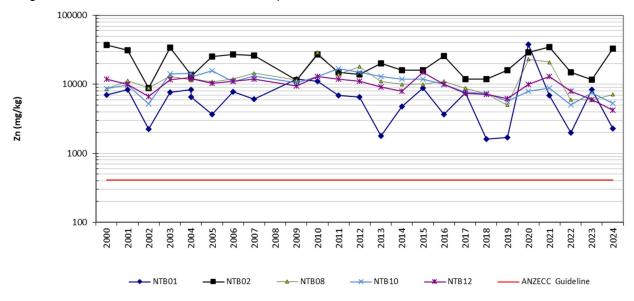


Figure 4-68 Total zinc concentrations in New Town Bay sediment

-

⁷ DEP (Derwent Estuary Program), 2007, Derwent Estuary Water Quality Improvement Plan Stage 2: Heavy Metals and Nutrients.

⁸ State of the Derwent Estuary 2020 Update

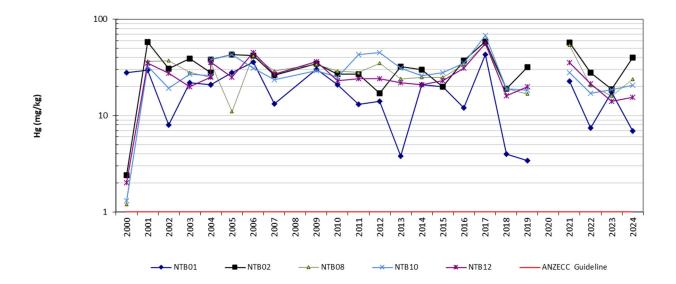


Figure 4-69 Total mercury concentrations in New Town Bay sediment

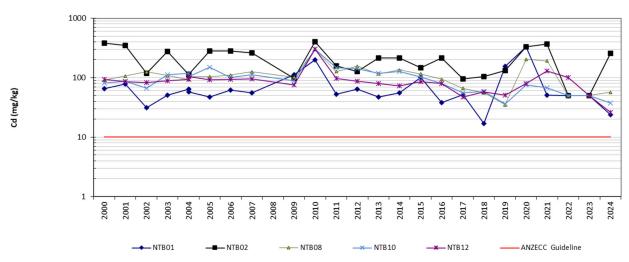


Figure 4-70 Total cadmium concentrations in New Town Bay sediment

4.3.2 Biota

4.3.2.1 Biota Monitoring Program Background

The NH biota monitoring program is comprised of three components – annual deployed oyster monitoring, biennial wild fish sampling, and triennial wild shellfish sampling. The aim of the program is to assess the concentrations of various heavy metals in seafood. The information recorded has also been used to provide seafood consumption advisory notices to the general public.

4.3.2.2 Biota Monitoring Program Details

Deployed Oysters

Oysters of the same known age are sourced from a commercial shellfish operation on the north-west coast of Tasmania (to ensure sound baseline conditions). A minimum of 20 individuals are analysed with no estuarine deployment to give a baseline for accumulation of metals.

The remaining oysters were housed in plastic mesh cages with approximately 25–30 individuals per cage (with the additional 5–10 oysters to account for any mortality). Cages are deployed at nine nominated locations in the middle Estuary and one background location at Bruny Island (refer Table 4-15 and Figure 4-72). The oysters are secured sub-tidally to existing structures as close to the bottom as possible.

Triple deployment through the water column is conducted at three locations with cages secured at the bottom, mid-point and surface (remaining sub-tidal to ensure 100% exposure) of the water column.

Deployed oyster cages are retrieved after six weeks. Twenty oysters are shucked, flushed with distilled water and combined to form a single sample for each location. Retrieved samples plus the control sample are then submitted to a NATA accredited laboratory and analysed for heavy metals including zinc, cadmium, lead, mercury and copper.

Fish

The common sand flathead (*Platycephalus bassensis*) was selected as a target species as they are resident in the estuary for their entire life cycle (i.e. they are not migratory).

Fish are caught under a permit issued under Section 14 of the *Living Marine Resources Management Act 1995* specifically granted for the purposes of heavy metal monitoring.

Flathead sampling is conducted during the same months every even numbered year (August–September) to minimise seasonal variations in hydrology and life cycles.

In 2015, the flathead monitoring program was reviewed by scientific officers with the Derwent Estuary Program. The review resulted in the program moving from annual to biennial, with the addition of selenium analysis and fish aging by assessment of otoliths. New catch sites were recommended, with these shown in Table 4-18. The sampling program consists of obtaining a minimum of 20 *P. bassensis* individuals by handline fishing, at each of the five sampling regions (refer Table 4-18 and Figure 4-71).

Individual fish were measured from snout to tail fin base, filleted (no gut tissue included), then frozen and sent for metal analysis at a NATA certified laboratory. Results for the individual samples were averaged to give a single result for the different metals at each of the five sampling regions.

Results are compared to the Food Standard Australia New Zealand (FSANZ) Food Standards Code (2016) and the Food Standards Code Additional Guidelines for Generally Expected Levels (GELs) for Metal Contaminants (2001) (refer Table 4-17). The heads of each fish was retained, frozen, and send to the University of Tasmania (Institute of Marine and Antarctic Studies division) for aging by the processing of the otoliths. Previously, the size of the fish was taken as an indicator of age. However, this is not considered to be reliable indicator, and thus, the accurate age information obtained from the otoliths will enable a better understanding of bioaccumulation of metals in fish flesh.

Wild Shellfish

Wild oysters and mussels are collected on a triennial basis to determine long-term trends in heavy metal accumulation.

Wild oysters are collected from 26 locations, and wild mussels from 30 locations throughout the estuary and surrounding waters (refer Table 4-18).

Wild oysters are sampled by randomly taking twenty individuals from the species *Ostrea angasi* or *Crassostrea giga* at each sampling location specified and combining them to form a single sample for each location.

Similarly, twenty individuals of the mussel species *Mytilus galloprovincialis* are taken from each specified sampling location and combined to give a single sample for each site. Composite sampling assists in smoothing variability between individuals to give a representative result.

Samples are then submitted to a NATA accredited laboratory and analysed for zinc, cadmium, lead, mercury and copper. Results are compared to the Food Standard Australia New Zealand (FSANZ) Food Standards Code (2016) and the Food Standards Code Additional Guidelines for Generally Expected Levels (GELs) for Metal Contaminants (2001) (refer Table 4-17).

The program was conducted in 2023.

Table 4-17 National food guidelines for metal levels in seafood (FSANZ, 2016)

Food Category	Maximum Levels (mg/kg)			Generally Expected Levels median/ 90 th percentiles (mg/kg)		
	Cadmium	Lead	Mercury	Copper	Zinc	
Mollusc	2	2	0.5	3 / 30	130 / 290 **	
Fish	*	0.5	0.5	0.5 / 2	5 / 15	

^{*} No level prescribed in FSANZ guidelines

^{**} Specific for oysters only

Table 4-18 Biota monitoring locations and target species.

Region and location	Location code	Target species: F=fish, DO=deployed oyster, M=wild mussel, O=wild oyster
	Upstream Ta	sman Bridge
Geilston Bay	GB	DO
Elwick Bay Red Pylon	EBP	DO, M, O
Dowsing's Point	DP	DO, O
Dogshear Point	DSP	M, O, F
Pavilion Point	PP	DO
Bedlam Walls	BW	DO, O, M
Nyrstar Wharf	ZHW	DO DO
Beltana Beacon	BB	DO, M, O
New Town Bay	NTB	DO, F, M
j ,		
Cornelian Bay	CB	DO, M, O
D. H. die	1	n Shore
Bellerive	BEL	F
Opossum Bay	OB	F
Tranmere Point	TMP	M
Trywork Point	TWP	M, O
Gellibrand Point	GLBP	0
White Rocks	WR	0
Pigeon Holes	PH	M, O
Iron Pot	IP	M, O
	Wester	n Shore
Kingston Beach North	KBN	F
Sandy Bay Beach	SBB	F
John Garrow Light	JGL	M
Cartwright Point	CWP	M
Taroona Beach	TAR	M, O
Blackmans Bay	BLB	0
Fossil Cove	FC	M
Dennes Point	DNP	O, M
Palph's Pay Spit	RBS	's Bay F
Ralph's Bay Spit	RB	F
Ralph's Bay Gibsons Point	GBP	M, O
Richardsons Beach (Nth)	RBN	M, O
Maria Point	MAP	M, O
Mortimer Bay	MTB	M, O
Old Lease	OL	M, O
Ice House Bluff	IHB	M, O
ice House Bluii		Henry Bay
Black Jack Rock	BJR	M
Seven Mile Beach	SMB	M, O
Sloping Island	SPI	M
Spectangle Island	STI	M
Carlton River	CR	M, O
Apollo Bay	APB	M, O
Aiken Point	AKP	M, O
Old Ferry Terminal, Barnes Bay	BBFT	M, O
Mickey's Bay	MB	DO, F, M, O

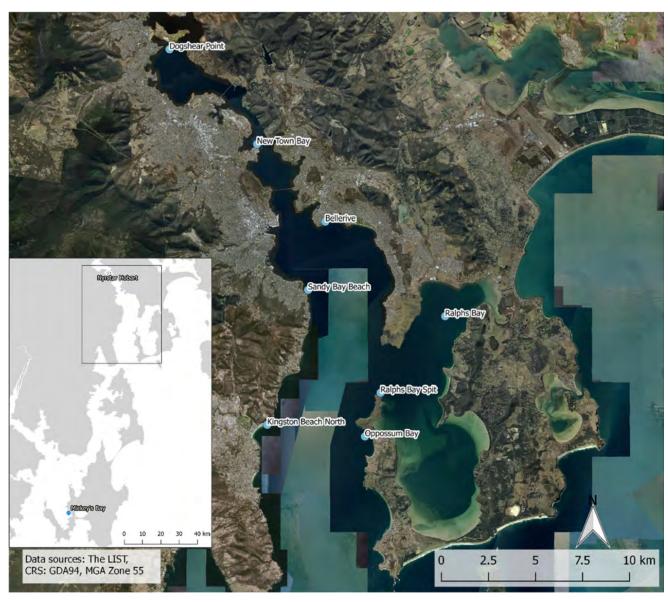


Figure 4-71 Flathead monitoring locations

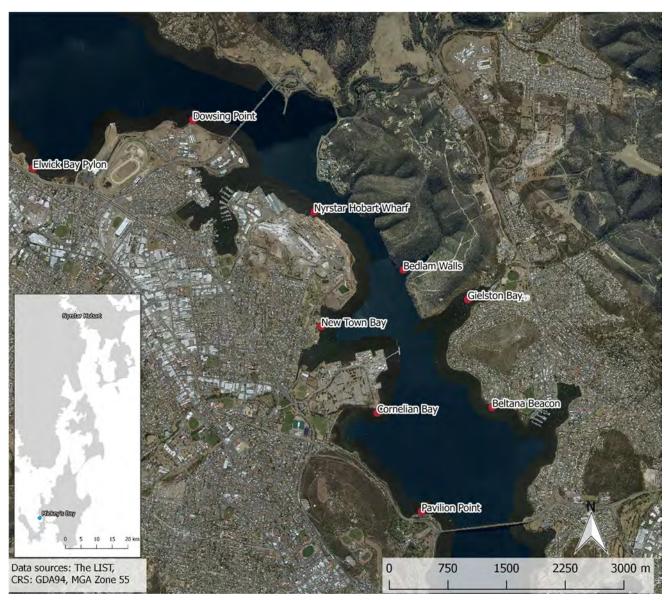


Figure 4-72 Deployed Oyster Sampling Locations

4.3.2.3 Biota Results & Discussion

Deployed Oysters

Figure 4-73 to Figure 4-76 show the accumulation of zinc, mercury, cadmium, lead and copper over the exposure period from the baseline level (deployed oyster control site). The cage that was located in Geilston Bay was removed on the 31/01/2023, as such, Geilston Bay is missing data from 2023.

Changes in zinc concentrations at most locations was comparable to the variability in the control group, indicating no significant change in zinc accumulation, with the exception of Nyrstar Wharf and Pavilion Point, both of which saw increased zinc concentrations over the monitoring period.

Cadmium concentrations decreased or remained consistent at most sites over the reporting period, with the exception of the Nyrstar wharf site which saw a significant increase in concentration.

Lead concentrations decreased overall at all sites excluding Nyrstar Wharf when compared to the previous reporting period. Geilston Bay and New Town Bay show an overall decrease over the three year period, but yearly results may indicate a rising trend that will continue to be monitored.

Copper levels were mostly steady or decreasing, increases were noted at Elwick Bay Red Pylon, Geilston Bay and Mickeys Bay that were comparable to variation in the control group. Significant increases in 2024 were noted at Pavilion Point and the Nyrstar Wharf locations.

The Nyrstar Wharf monitoring location saw a dramatic increase in concentration of zinc, cadmium, lead and copper in 2024, owing to a single extremely high result from the surface sample in that year. The results were an order of magnitude greater than previous years, and represents a second year of elevated zinc for this site.

Mercury levels decreased or remained steady at all sites, There has been a significant decline at the Nyrstar Wharf location in particular, with concentration returning to levels comparable to 2020.

The recent DEP report positively comments on the decline in zinc, mercury and lead in oysters deployed upstream of NH at Elwick Bay and decline in zinc concentrations downstream of NH in Cornelian Bay and Bedlam Walls.

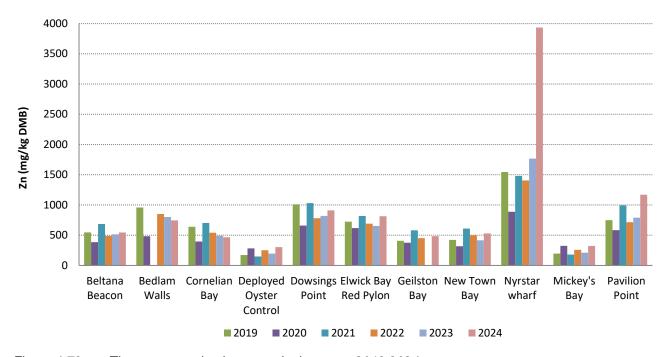


Figure 4-73 Zinc concentration in oyster deployments 2019-2024

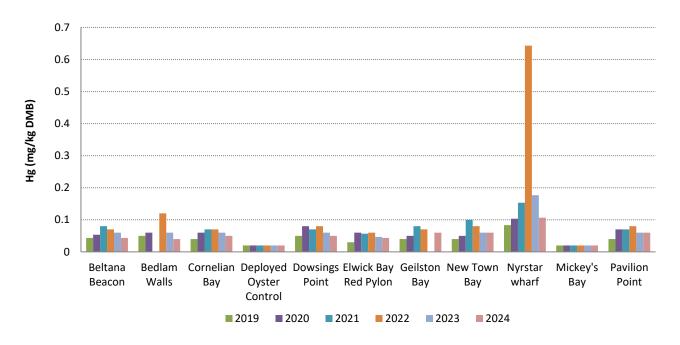


Figure 4-74 Mercury concentration in oyster deployments 2019-2024

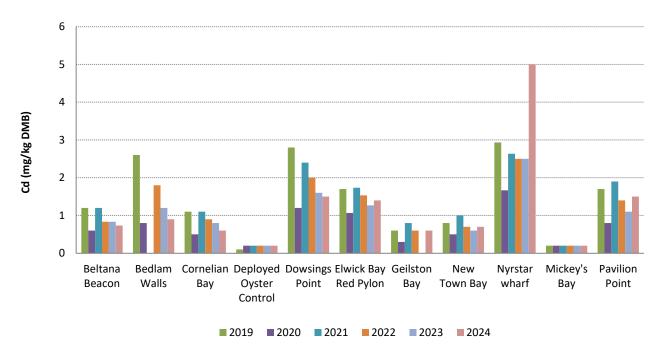


Figure 4-75 Cadmium concentration in oyster deployments 2019-2024

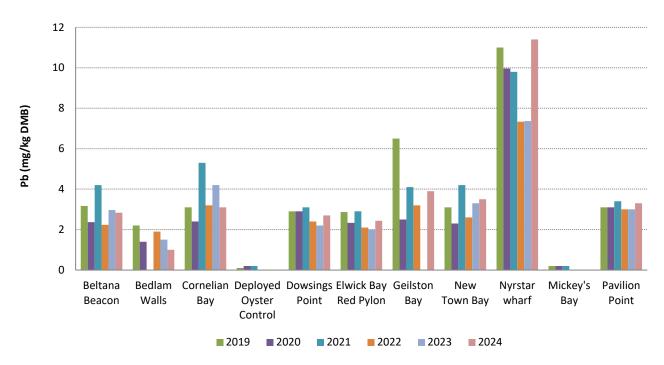


Figure 4-76 Lead concentration in oyster deployments 2019-2024

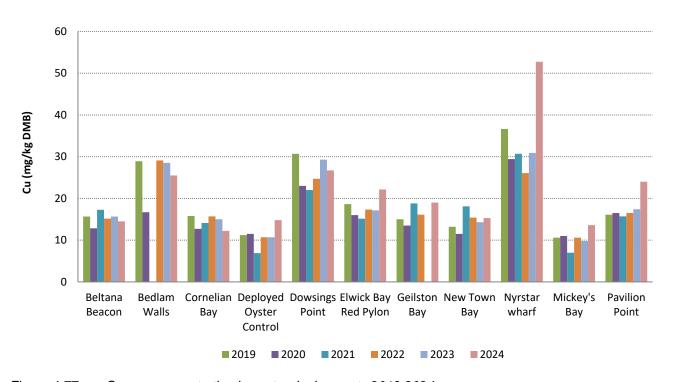


Figure 4-77 Copper concentration in oyster deployments 2019-2024

Figure 4-78 and Figure 4-79 below show the comparison between the surface, middle and benthos results for the deployed oysters at Nyrstar Wharf, Elwick Bay and Beltana, confirming the trends observed above, especially the unusual results at the surface level for the Nyrstar Wharf location.

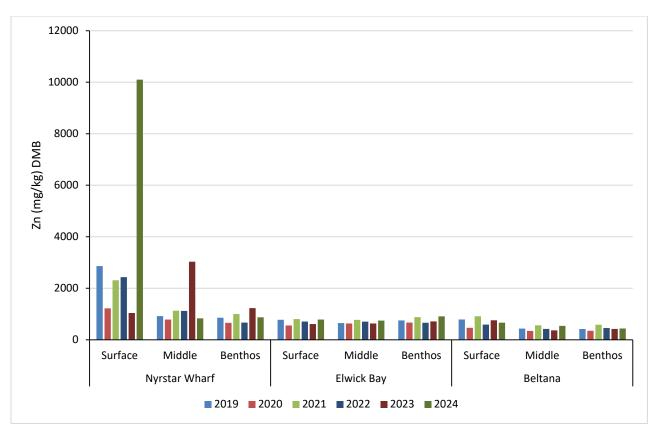


Figure 4-78 Zinc levels from triple deployment of oysters through the water column 2019-2024

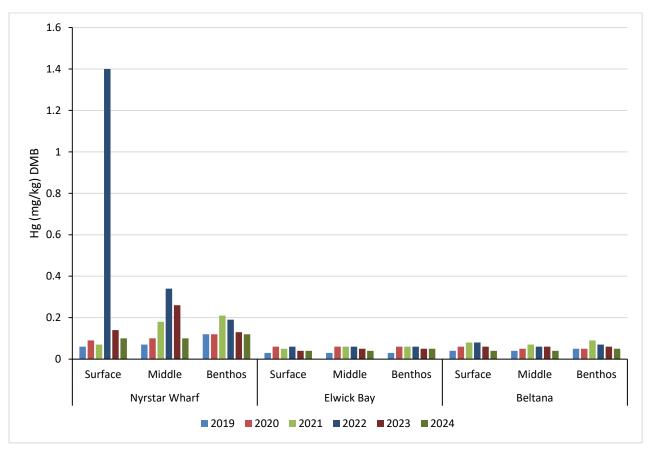


Figure 4-79 Mercury levels from triple deployment of oysters through the water column 2019-2024

Flathead

The collected data for mercury levels in the caught fish Figure 4-80 shows no clear long term trends, although a decrease in median and maximum levels appears to have emerged from 2013 which may indicate gradual improvement, the high variability in this data significantly reduces confidence in any such analysis.

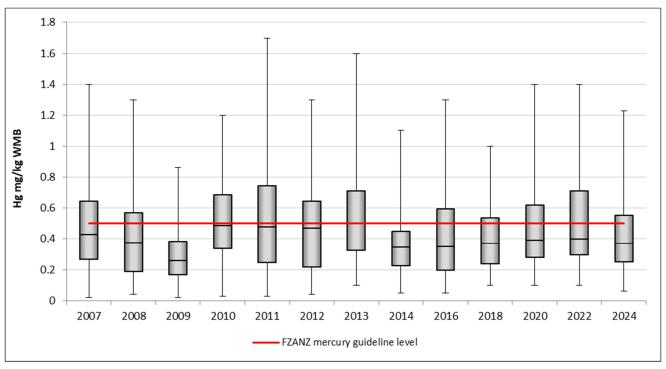


Figure 4-80 Mercury levels from wild caught flathead per year 2007-2024

The inclusion of fish age estimation by otoliths has added another element to the interpretation of these levels. The report⁹ into the age estimation of the fish caught in 2024 noted the inconsistent distribution of fish age brackets between survey years, changing environmental conditions and spawning periods, reinforcing the high variability in the characteristics of the flathead samples.

The following advice has been published by the Director of Public Heath:

- Do not consume any shellfish or bream from the Derwent, including Ralphs Bay
- Other fish from the Derwent should not be eaten more than twice a week and the following should further limit their consumption to once a week:
 - Pregnant and breastfeeding women
 - Women who are planning to become pregnant
 - Children aged six years and younger

When eating fish from the Derwent, it is best to avoid eating fish from other sources in the same week.

⁹ Age estimates of Nyrstar's 2024 Southern Sand Flathead samples from the Derwent Estuary, Coulson P. 2025

Wild Shellfish Survey

The triennial wild shellfish survey was conducted in 2023.

Between 2001 and 2020 mercury in wild oysters was showing a gradual decrease, but increased in the 2023 sampling round (Figure 4-81). The median concentration was elevated due to samples collected on the Eastern Shore and Ralphs Bay. Since 2001 lead levels can be observed to be declining in wild oyster samples with 2023 recording the lowest median concentration of lead since monitoring began (Figure 4-82). Figure 4-83 and Figure 4-84 show cadmium and zinc concentrations continue to be consistent with results observed over recent monitoring rounds.

Over the past 23 years, mercury and lead concentration in wild mussels has seen little variation as shown in Figure 4-85 and Figure 4-87. The zinc concentration in wild mussels consistently decreased between 2001 and 2008, and increased across 2011 and 2014. Since then, median concentration has slowly been decreasing as seen in Figure 4-88. Cadmium concentration in 2023 was observed to be consistent with results seen prior to the increase observed in 2014. The median cadmium concentration recorded in 2023 equalled 2020 results, which is the lowest since the monitoring campaign begun (Figure 4-86).

Wild oyster and mussel populations continue to show lead levels in excess of FSANZ maximum level guidelines. Figure 4-84 shows zinc concentrations in wild oysters continue to be well beyond the FSANZ 'generally expected level'. Both wild oyster and mussels continue to record concentrations under the FSANZ maximum level guidelines for mercury (Figure 4-81, Figure 4-85).

Both the wild mussel and wild oyster data suggests shellfish are more contaminated in the upper Derwent Estuary (Upriver of the Tasman Bridge) and along the lower Eastern Shore/Ralphs Bay. Estuarine flows preference the Eastern Shore whilst exiting the river, with heavy metals likely settling out of the water where tidal energy decrease, such as Ralphs Bay. Although heavy metal concentrations are higher along the Eastern Shore and Ralphs Bay, there are no clear trends for the individual monitoring locations within these areas.

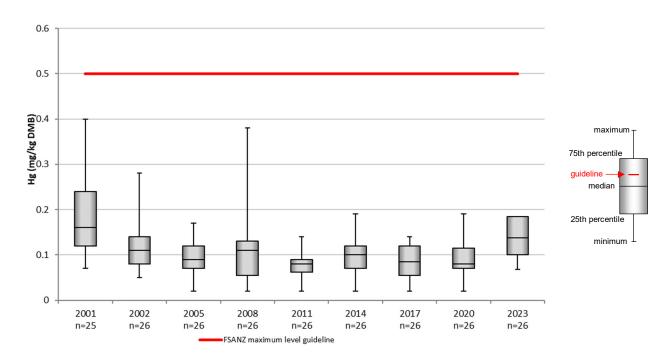


Figure 4-81 Mercury in wild oysters 2001 – 2023

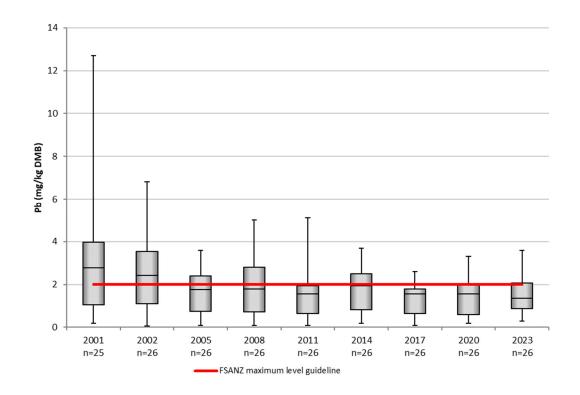


Figure 4-82 Lead in wild oysters 2001 – 2023

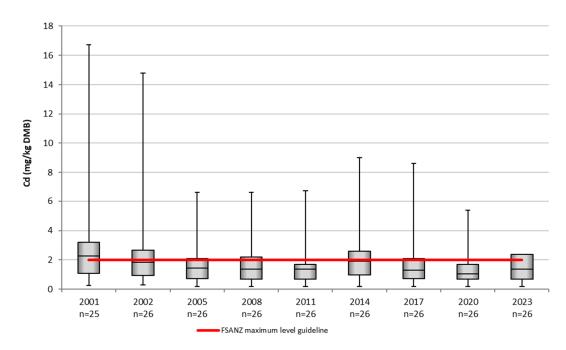


Figure 4-83 Cadmium in wild oysters 2001 – 2023

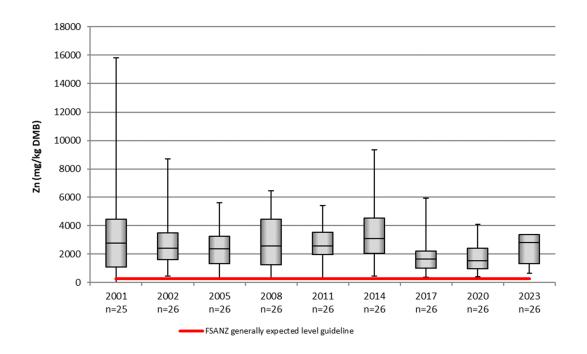


Figure 4-84 Zinc in wild oysters 2001 – 2023

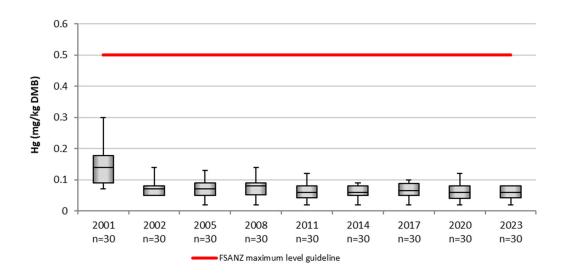


Figure 4-85 Mercury in wild mussels 2001 – 2023

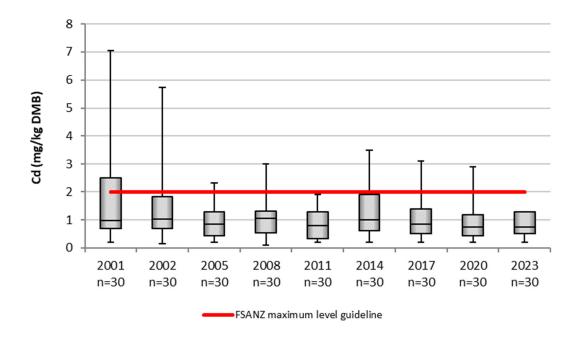


Figure 4-86 Cadmium in wild mussels 2001 – 2023

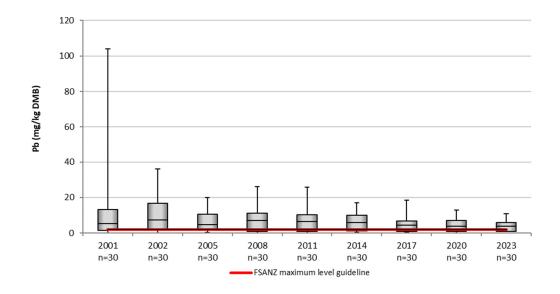


Figure 4-87 Lead in wild mussels 2001 – 2023

Figure 4-88 Zinc in wild mussels 2001 – 2023

4.4 Noise

NH monitors noise continuously at three stations within the neighbouring community. The stations are located in Birch Road and Delwood Drive, Lutana and at Saundersons Road, East Risdon (Figure 4-89).

Figure 4-89 Noise monitoring locations

The Permit specifies noise emissions limits from site activities, both as measured by the aforementioned community noise monitors, and when measured at any noise sensitive premises in the neighbouring communities. These limits are shown in Table 4-19. In addition to continuous monitoring, NH is required to undertake a three yearly site wide comprehensive noise survey to identify noise sources. The most recent report was completed in October 2023 based on measurements conducted between September and October 2023. The results of this survey are discussed in Section 4.4.2.

Table 4-19 Permit limits for noise levels in the receiving environment

Monitoring location	Test frequency	Emission limits		
Test Parameter - A-weighted sound pressure L _{90 &} L _{EQ}				
Birch Road, Lutana	Continuous	Monthly median L ₉₀ 52 dB(A)		
	Attended	10-20 minute average 52 dB(A) if 5d B(A) Ambient		
Delwood Drive, Lutana	Continuous	Monthly median L ₉₀ 52 dB(A)		
	Attended	10-20 minute average 52 dB(A) if 5dB(A) > Ambient		
Saundersons Road, East Risdon	Continuous	Monthly median L ₉₀ 56 dB(A)		
Nisuon	Attended	10-20 minute average 56 dB(A) if 5 dB(A) > Ambient		

4.4.1 Noise Monitoring Program Details

In 2020 NH replaced the three previous noise monitors, the Larson Davis 870 Sound Level Meters, with contemporary noise monitors, SV 307 Integrated Noise Monitoring Stations. The installation of new monitors improved the reliability and capability of the NH noise monitoring network and also increased our capacity to collect additional meaningful data. The three noise monitors operate continuously, sampling A-weighted sound pressure levels in L-value measurements. Each unit is attached to a power pole at 3 m above ground level to reduce the risk of vandalism and to facilitate the supply of mains power to the monitors.

All continuous noise monitoring is conducted in accordance with Australian Standard 1055.1-1997 Acoustics – Description and Measurement of Environmental Noise – General Procedures.

Noise may be classified into two categories; continuous noise and nuisance noise. Continuous noise contributes to a relatively constant background and is usually described by L90 where Ln is the sound pressure level that is exceeded for n% of the time. Nuisance noise is intermittent and raises ambient noise above usual background levels and L10 describes these noise events during the interval. Of greatest relevance to the community are nuisance noise sources, which pose the greatest management challenge, given their intermittent and changeable nature. Nuisance noise can also be subjective within the community.

Sources of noise on site depend on operational activities, including but not limited to:

- Vehicles including heavy vehicles and fork lift trucks;
- Fans on cooling and ventilation systems;
- Conveyors such as rubber belts, walking beams, and chain conveyors;
- Materials handling such as stacking zinc or excavating concentrates;
- Minor explosions from the cell house and roast boiler cleaning;
- Power tools including grinders, impact guns, and construction equipment;
- Steam emissions from heating and venting operations;
- Warning alarms or PA announcements that indicate vehicle movement or process communications;
 and
- Sirens during emergencies or emergency drills.

Over time, site wide noise surveys have been conducted to identify specific noise sources that contribute to impacts around the smelter. These studies have supported work toward ameliorating major noise sources.

NH specifies strict hours of operation for non-routine tasks or those that produce excessive noise, and proactively considers the management of potential noise issues when planning on site work. NH encourages feedback regarding noise issues from the local community. In the event of a noise complaint, investigative procedures are initiated in an attempt to identify and mitigate the source of the noise. External noise monitoring experts are engaged where in-depth analysis of noise impacts is required.

4.4.2 Noise Results and Discussion

Results

Figure 4-90 shows monthly median L_{90} values at the monitoring sites for the reporting period. These show variable measurements across the community noise monitoring locations. A seasonal trend is apparent for both monitors situated in Lutana, Birch Road and Delwood Drive which is considered likely to be a result of seasonal wind speed variation.

Some loss of data occurred during the reporting period:

- On 8 May 2022 the secure digital (SD) card became corrupted and stopped recording data. The monitor was removed and send away for repairs and calibration. The monitor was reinstalled on 8 June 2022.
- The Birch Road (8 June 2022 20 June 2022) and Saundersons Road (20 June 2022 28 June 2022) monitors were sent offsite for calibration.
- In September 2024, the monitors were shipped to Poland to upgrade the data communication system from 3G to 4G due to the impending decommissioning of the 3G telecommunications network.
 - During this period, Nyrstar hired identical monitors to retain continuity of data.
 - Data was stored locally within the hire monitors during this time with data being transmitted to a third party web based platform for regular review by Nyrstar staff.
 - Despite every effort by Nyrstar to obtain the logged data, data was lost for the Saundersons Road monitor between 28 November 2024 and 6 December 2024. No data was lost for other monitors during this period. The overall trends show that the regulatory limit was not exceeded at the three monitoring locations.

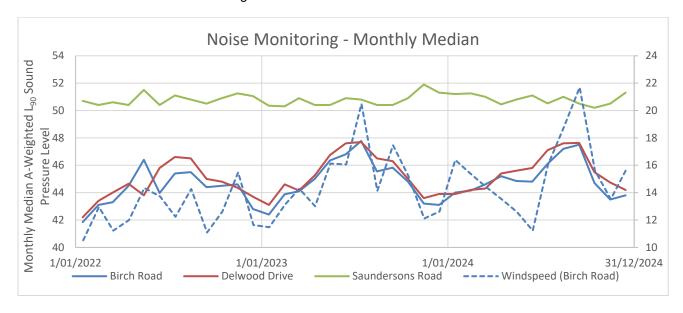


Figure 4-90 Monthly median L₉₀ noise dB(A) results for Birch Road, Delwood Drive, Saundersons Road 2022–2024

Community

22 noise complaints resulting from NH operations were received during the reporting period. The majority of the complaints were due to nuisance noise emanating from the Roast Department, specifically from venting steam from the #6 Roaster, and from the use of the start-up scrubber. In 2024, engineering works were completed to address these noise concerns.

The full public complaints register is provided in Appendix 1 – Community Complaints 2022 – 2024 and includes complaints relating to nuisance noise, and NH's response.

As in the past, general site noise is addressed both as issues arise in connection with particular activities, and also proactively, by reinforcing protocols for considering noise before and during routine and non-routine tasks. Most of the noise complaints are related to noise at night (such as banging, reversing beepers and alarms) and the activity of steam venting in the Roasting department.

Proactive management of site activities is a priority for NH and is critical to the mitigation of any new noise sources. All new capital work projects and significant maintenance activities on site are required to consider potential noise emission sources during design, construction and operational phases. A risk assessment approach ensures due consideration is given to minimising impacts of potential noise emissions at all stages through:

- Specifically understanding noise that would be generated from new plant and equipment or as the result of a new process or maintenance activity;
- Using the opportunity to 'design' out new noisy operational aspects where possible;
- Using JSEAs to ensure specific noise emissions controls were identified and implemented during construction activities (including baseline and activity noise monitoring where considered necessary); and
- Allowing sufficient time to give the community advance warning of a potential increase in noise and what it may be associated with.

NH is committed to working with the local community to address noise concerns. In the event of a complaint, NH makes every effort to respond by immediately investigating the specific source of the noise and subsequently ceasing or changing the offending operation where possible. In some instances, where there are no feasible solutions for specific nuisance noise sources, NH is proactively seeking to better understand and identify practical ways to manage these sources.

Lastly, it is important to note that while NH activities are a significant contributor to noise in the local area, weather conditions, time of day, season and local community activities can also contribute to noise data collected at community monitoring sites.

Triennial Noise Survey

The triennial noise survey was conducted by Noise Vibration Consulting (NVC) between September and October 2023, in compliance with The Permit conditions N3 and N4. The survey utilised six monitoring locations as well as a control location approximately 2.9 kilometres away from the site. Noise measurements were made during the day, evening and night at all locations. The results of this survey demonstrate that:

- Measured noise levels within the surrounding community were compared to the criteria outlined within The Permit satisfying all the relevant criteria.
- NH noise emissions have changed very little over the last three years, results are consistent with noise levels measured between 2008 and 2020, suggesting no significant new noise sources.
- In the community surrounding NH (East Risdon and Lutana), noise emitted from NH controls the background noise. Noise levels at Delwood Drive and Saundersons Road are similar across day, evening and night. Birch Road noise is more variable across these times.
- NH's ongoing operation involves actively reducing its noise emissions. Noise measurements compared
 to the community complaints register identified the more intrusive noises generated on site. The three
 most problematic sources were identified as steam venting, Start-up Scrubber Fan and the #6 SO2
 Blower.

The survey showed that there are many noise sources from NH which contribute to community noise levels. It is considered based off the data and complaints register that nuisance noise is of more concern, rather than NH controlling the background noise.

A number of noise mitigation projects were implemented in the Roast Department in 2024 to reduce the risk of nuisance noise in the community. Works included installation of a new silencer on one of the primary steam vents, installation of silencers on two of the steam vents associated with a steam turbine, and complete lagging and cladding of the start-up scrubber stack to reduce tonal noise caused by large volumes of air flowing through the stack.

4.5 Process and Non-process Waste

4.5.1 Process Waste and By-products

The production process at NH uses raw materials (concentrates), which contain zinc as well as other metals and sulphide. Metals do not degrade so the principle of 'mass balance' applies to the smelting process whereby all metals entrained in concentrates will present as a residue or by-product. Figure 4-91 shows a schematic of the NH process flow sheet highlighting key by-products and wastes that are generated as part of zinc production. Materials are removed from the process as either products for direct sale, by-products for potential reuse and / or sale, or process wastes requiring disposal. Some stockpiled waste residues/by-products that are no longer produced are still present on NH land as described in the following sections.

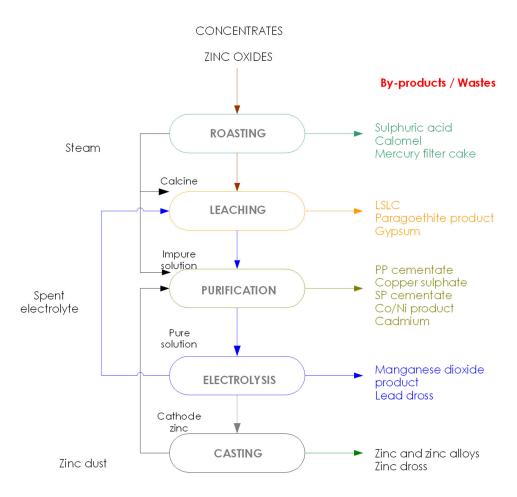


Figure 4-91 By-product flow sheet

4.5.1.1 Process Waste Description and Management

Hobart Leach Product No. 1 (HLP1)

HLP1 is no longer produced at NH, though two known areas of HLP1 material remain in the Loogana precinct after the 2013 removal project. These are in close proximity to TasNetworks power infrastructure adjacent to the 2014 rehabilitation area (Figure 4-92), and in a section of the foreshore at Woodman's Point. During rehabilitation works, the material near the TasNetworks infrastructure was delineated with geofabric between the HLP and the rehabilitated area. The parcel at Woodman's Point was found during exploratory potholing on the foreshore embankment and further investigative work will be required to define the product boundaries. Recovery and rehabilitation in this area is challenged by the proximity of the material to indigenous midden artefacts.

Figure 4-92 Remaining HLP1, shown on far right

Jarosite

The temporary secure landfill cells for jarosite (Figure 4-93 and Figure 4-94) are monitored so as to ensure that no environmental harm results from the stockpiling of the material. Results of regular groundwater monitoring suggest that as a whole groundwater quality is generally improving across the Loogana-Inshallah area. The concentration of metals in groundwater was found to be elevated in a localised area following the installation of a new groundwater well, MB143 in 2022. The cause of this is currently under investigation.

Future management options for the material in the jarosite cell have been broadly assessed; however no management decision has yet been taken. NH recognise that any decisions made in regards to the management of the jarosite would need to be made in consultation with the relevant stakeholders.

Management options investigated to date have included:

- Reuse it is considered that jarosite reuse technology is not readily available in a form that would support the application of this option. Considerable evidence would be required to demonstrate a reuse option that is safe for health and environment, low-risk from a legal perspective, and logistically and economically feasible.
- Reprocessing technical constraints associated with each of the reprocessing options assessed limit the feasibility of reprocessing jarosite either locally or through another smelter.
- Extraction of high value metals a desirable option, however the cost involved to extract the high value metals is significantly more than the value of the metals extracted. This is due to the relatively low

- concentrations of high value metals in the jarosite and also the lack of local infrastructure to pursue this option.
- Construction of a new storage site at NH one location on the NH site is considered to be potentially suitable for long term storage of the material. Investigations into this option recommenced in 2020 and extended into the reporting period.
- Off-site disposal not currently considered to be a feasible option without prior treatment.
- Assessment of treatment technologies in 2011, three specialist contracting companies conducted treatment trials on the jarosite. The trials indicated that the leachable fraction of metals within the material could be successfully immobilised using a range of different reagents.

Figure 4-93 Jarosite secure landfill

Figure 4-94 Jarosite secure landfill

Effluent Treatment Solids

All stormwater and process water collected on site is treated in the Effluent Treatment Plant (ETP). The heavy metals are precipitated with the resulting underflow slurry from the thickener generally being returned to the Leach plant. However, return of the underflow slurry to the Leach process is limited by the accumulation of fluorine, magnesium and manganese in the circuit. When the operational fluorine, magnesium and manganese limit is reached in Leach, the ETP underflow slurry is diverted through a filter bed system in ETP. The resulting ETP underflow solids are temporarily stockpiled in a covered bunded area. The solids are then transported by truck to the residue shed to be blended directly with PG or LSLC, and sent to the Nyrstar Port Pirie multi-metal smelter for further processing and recovery of valuable metals.

Mercury Filter Cake and Mercury Contaminated Materials

Mercury Filter Cake (MFC) is generated through the mercury removal process at the Mercury Removal Plant. Chemical stabilisation of the material followed by disposal at an approved facility is the current management method for MFC. Success of the chemical stabilisation program has been variable due to changes in the composition of MFC over time.

In early 2020, approximately 25 t of MFC was sent to a mercury recycling plant in Melbourne, in order to trial the transport and recycling of the material. The transport of the MFC proved to be extremely challenging, due to the classification of the material as a Dangerous Good, and the limitations of the containers in which the material is stored.

During the reporting period, NH disposed of 1,462 t of treated MFC and mercury contaminated waste to the Copping C Cell.

4.5.2 Non-Process Waste Materials

NH's non-process waste refers to waste materials that are generated during normal plant operations or projects and are not by-products from the process. The non-process waste hierarchy at NH is based around segregation of waste streams depending on opportunities for reuse, recycling and where no such opportunities exist, disposal. An overview of the non-process waste types delineated at NH follows.

4.5.2.1 Non-Process Waste Materials Description & Management

Reusable / Recyclable Materials

Non-process reuse / recycling initiatives include:

- Oil, grease and lubricants (dedicated waste oil collection area);
- Scrap steel (dedicated steel bins);
- · Cardboard (dedicated blue bins with lids);
- Office paper (dedicated blue wheelie bins);
- Security shredding (dedicated blue wheelie bins);
- Toner cartridges (dedicated collection boxes);

- Timber pallets (collected and stored for reuse);
- E-waste (dedicated collection bin);
- Battery recycling (dedicated collection bin);
- Mobile phones, charges and accessories (dedicated collection box);
- Clean timber and green waste (dedicated collection bin); and
- Fluorescent tubes and lamps.

General Waste

Domestic and inert waste is collected by a cleaning contractor and placed into department based general waste bins for disposal at an approved waste disposal site. This waste consists of office, crib room and change house refuse and inert materials such as packaging, strapping, scrap wire and clean electrical conduit.

All non-process waste materials that may have had contact with process materials must be cleaned prior to placement in the general waste bins located around the site for disposal at an approved waste disposal site.

Redundant Chemicals

Redundant chemicals that cannot be utilised in NH production processes are stored on site for collection by a registered agent on an as required basis.

Management Systems

In addition to the classification and segregation of materials to determine the suitable recycling or disposal option, the site maintains a tracking procedure for off-site movement of materials. The system is an authorisation process, which:

- Ensures contaminated items are not taken off site;
- Ensures non-contaminated materials are authorised for transport off site; and
- Tracks the quantities of wastes and recyclable materials being generated.

4.5.2.2 Non-Process Waste Materials Results & Discussion

Quantities of waste materials requiring off-site disposal, treatment or recycling at an approved waste facility for the past three years is tabulated in Table 4-20 and presented graphically in Figure 4-95. The amount of hazardous waste to landfill during the reporting period is mainly attributed to the disposal to the Copping B and C Cells of the following waste streams:

- 440 tonnes of contaminated fibreglass, plastic and rubber
- 147 tonnes of contaminated bulka bags / filter cloths / baghouse bags
- 1,133 tonnes of contaminated refractory
- 454 tonnes of contaminated soil

Approximately 1,090 tonnes of non-hazardous waste collected from around the site was disposed of at the Copping landfill.

Table 4-20 Total tonnes of waste materials recycled for the period 2022 to 2024

Material	2022	2023	2024
Cardboard and paper	5.88	8.31	0.00
Scrap metal	397.03	338.24	380.04
Clean timber and greenwaste	25.56	7.12	3.70
Oil	17.53	6.10	3.60
Demolition waste	27.00	319.50	0.00
Other	3.60	2.30	3.80
Total waste recycled (t)	476.87	681.59	391.17

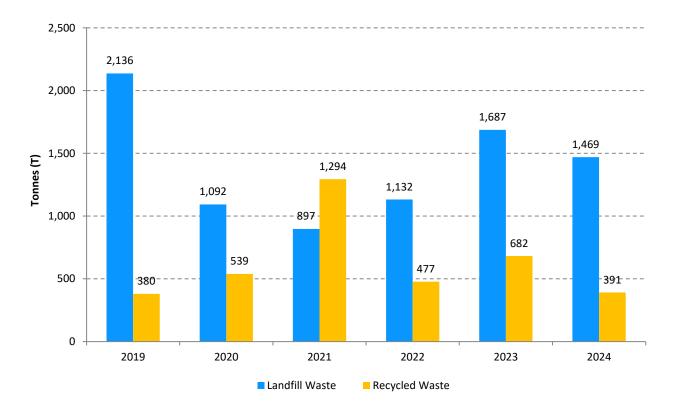


Figure 4-95 Waste to landfill and recycled for the period 2019 - 2024

An summary of the quantities of controlled wastes being held on the site is shown in Table 4-21.

Table 4-21 Estimated quantities of controlled waste held on the site as at 31 December 2024

Waste / By-Product	Туре	Storage Location	Inventory as at 31/12/22 (t)	Inventory as at 31/12/23 (t)	2024 produced (t)	2024 disposed- recovered (t)	Inventory as at 31/12/24 (t)
Jarosite	ss Waste	Jarosite Cells	206,328	206,328	0	0	206,328
Neutralised Acid Sludge (screened)		Pad upriver of Dome	1,300	1,300	0	0	1,300
MFC (untreated)	Process	Environment bund/Hydromet Building	252	252	342	260	334
Contaminated soil		Quarry	31,658	31,658	0	0	31,658
Contaminated soil		Environment Bund area	673	673	278	454	497
Contaminated timber		Quarry	12,513	12,632	44	0	12,676
Bulka bags		Waste Transit Yard Shed	32	21	7	30	2
Rubber		Waste Transit Yard	4	4	13	17	0
Asphalt	, e	Quarry	5,128	5,179	47	0	5,226
Fibreglass/Plastics	Nast	Waste Transit Yard/Site	3	3	149	119	33
Grease	ess /	Waste Transit Yard Shed	4	24	5	0	29
Oil	Proc	Waste Transit Yard Shed	8	8	6	11	3
Filter media, baghouse bags	Non Process Waste	Waste Transit Yard	17	3	10	9	4
Acid plant sludges		Environment bund	10	10	90	0	100
Refractory bricks		Area near Environment bund	815	815	802	0	1,617
Vanadium pentoxide - spent catalyst		Zinc shed, Waste Transit Yard, Riggers' locker	170	220	0	220	0
Contaminated concrete		Environment bund area	233	700	50	700	50

4.6 Review of the Storage and Handling of Environmentally Hazardous Materials

In 2021, NH submitted a report to the EPA detailing the storage and handling of environmentally hazardous materials at the site. This report included an assessment of the storage facilities, and identified any high risk locations, requiring improvement works. It was a requirement of the acceptance of the report that progress updates on the works were to be provided to the EPA on an annual basis.

The improvement works completed in the past 12 months include:

- Repairs to the #6 acid plant mercury bund sump
- Repairs to a hole in a section of the pre-neutralisation bund
- Replacement of the sump in the secondary purification bund
- Repairs to address damage in one corner of the premix and flocculant tank bund in Electrolysis
- Repairs to the roof and walls of the Concentrate Shed
- Repairs to the roof and wall of the Dome

The majority of bunds and sumps were cleaned, and inspected during 2024, with the assessment results to be submitted to the EPA in 2025 in the form of an updated report on storage and handling of hazardous materials.

4.7 Energy Management & Climate Change

Zinc plays a fundamental role in the energy transition. However, its extraction and transformation can be energy intensive. Nyrstar zinc smelters are amongst the most energy efficient in the industry, and we continually investigate opportunities for further improvement. The majority of NHs greenhouse gas emissions relate to the electricity we use rather than from direct emissions from our production plants, so our carbon footprint is in fact highly dependent on the regional electricity generation source. The electricity used at the Hobart smelter is primarily generated from hydroelectric sources (a form of renewable energy), resulting in lower greenhouse emissions than other Nyrstar sites. A Life Cycle Assessment for NH zinc was conducted during the reporting period, with the carbon footprint calculated to be 1.461 t/CO₂ equivalent per tonne of zinc metal. This is the second lowest carbon intensity in the Nyrstar Group, with the smelter located in Auby, France achieving a lower carbon intensity due to the use of nuclear generated power.

Greenhouse gas emissions are also generated through the use of LPG, diesel, natural gas and reagents.

NH tracks energy consumption on a monthly basis. Annual consumption for the current, and previous reporting period is shown below in Figure 4-96. Diesel consumption has been included as a separate graph for optimal data display.

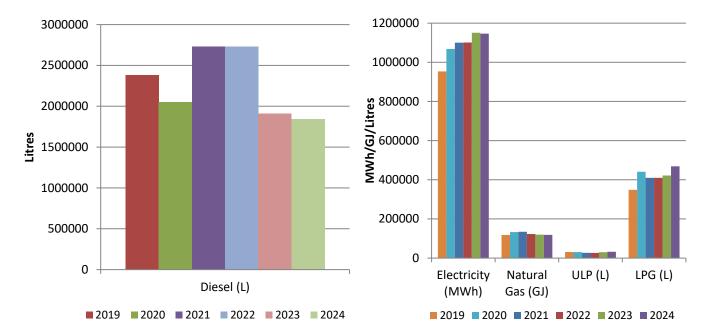


Figure 4-96 2019 – 2024 energy consumption

With the exception of diesel, energy consumption has remained reasonably stable over the reporting period. The bulk of the diesel consumption on site is a result of shutdown events. The roasting process generates a considerable volume of steam which is used to power other parts of the plant. When the roasters are not operating, as is the case during shutdowns, the steam must be produced using diesel fuelled package boilers. In addition, it requires a significant amount of diesel to start up the roasters after a shutdown. Even with the shutdown, the energy content of the waste heat recovery (in the form of steam) equates to approximately 616,000 GJ per year. This is almost five times the energy consumed in the form of natural gas for the year, and thus represents a significant energy recovery program.

Both zinc and lead products of Nyrstar smelters make an important contribution to sustainable development and reducing CO₂ emissions: zinc through the galvanising of steel to prevent corrosion and extend its useful life; and lead through batteries, which power electric vehicles and facilitate the storage of electricity from alternative energy sources.

4.8 Flora and Fauna

A search of the EPBC Act Protected Matters Database identified 52 threatened fauna species and 10 threatened flora species listed under the EPBC Act database as potentially present within 1 km of the site¹⁰. There are two EPBC Act-listed threatened ecological communities in the vicinity of the Nyrstar Hobart site.

The operational area of the Nyrstar Hobart site contains minimal to no suitable habitat for EPBC Act-listed threatened fauna or flora species and it is considered highly unlikely that any threatened species have the potential to be present on the smelter site. The company owns substantial buffer zones, 90 ha of which are located on the eastern shore of the Derwent River, in which there may be the potential for the presence of some EPBC Act-listed threatened fauna or flora species. The buffer zones were put in place primarily to prevent residential development within too close of a proximity to the smelter.

In 2007, a Natural and Cultural Values Inventory of the buffer zone on the eastern shore was conducted (Hydro Tasmania Consulting 2007 – Natural and Cultural Values Inventory Pegara). The site was described as being comprised of dry vegetation types, with 4 native vegetation communities and a small area of exotic pasture land. The vegetation types and area were listed as follows;

- Eucalyptus amygdalina forest on mudstone 36 ha
- Eucalyptus risdonii forest 27 ha
- Eucalyptus globulus dry forest 10 ha
- Lowland grassland complex 2 ha

The dry forest is mostly regrowth trees, as a result of past farming activities and wildlife. Few trees with hollows were noted, and little fallen timber. Thus, the fauna habitat value of the site is considered to be low to moderate, due to paucity of nesting and shelter sites for hollow dwelling fauna, and little fallen timber to provide habitat for ground dwelling species.

Lowland grassland areas provide foraging habitat for some species, where the dry forest would not be suitable, due to the thin soils associated with them.

NH maintains an operating procedure to provide guidance on the protection of known threatened species and habitat associated with their occurrence. The document describes actions to be taken in the event of the following:

- A new species suspected to be of threatened status is identified on land owned by NH; and
- A species known to occur on the site is elevated to threatened status; or the status of a known threatened species changes.

A review of the Commonwealth threatened species database is undertaken each year to assess changes to threatened species lists for the area surrounding the smelter, and to enable NH to determine if any changes to management of the buffer zones are required.

4.9 Cultural Heritage

be developed

The NH site is home to a number of identified sites of cultural heritage value. Aboriginal middens have been mapped along the southern foreshore area on the operating site and various items of cultural heritage value have been observed on the Pegara property on the eastern shore of the estuary. A site procedure outlines corporate responsibilities relating to the management of known cultural heritage sites within the NH footprint, and actions to be taken in the event of the discovery of any previously unrecognised cultural heritage sites. This procedure does not provide instructions for developing action plans for management of a relic or heritage site. The Department of Natural Resources and Environment (NRE) is consulted if there is a need for such a plan to be developed.

¹⁰ Protected Matters Search Tool - DCCEEW Accessed 5 March 2025.

5. GLOSSARY

AER	Annual Environmental Review
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZFA	Australia New Zealand Food Authority
ARI	Average recurrence interval
As	Arsenic
Cd	Cadmium
CO ₂	Carbon dioxide
Cu	Copper
CuSO ₄	Copper sulphate – secondary product sold to external parties
CWP	Contaminated water pond
dB(A)	Unit to measure 'A-weighted' sound pressure levels. A weighting is an adjustment made to approximate the frequency response of the human ear.
DEP	Derwent Estuary Program
EMPCA	Environmental Management and Pollution Control Act 1994
EMS	Environmental Management System
EPA	Environmental Protection Authority
ETP	Effluent Treatment Plant
F	Fluorine
Fe	Iron
FSO	Foreshore scrubber outfall
GLC	Ground level concentration
HAL	Hot acid leaching
Hg	Mercury
HLP1	Hobart Leach Product No. 1
HVAS	High volume air sampler
JSEA	Job Safety and Environment Analysis
Kg/d	Kilograms per day
L ₉₀	Static noise level
L _{eq}	Equivalent continuous sound level
LSLC	Lead sulphate leach concentrate – high lead containing product from strong acid leach stage of filtration
m³/h	Cubic meters per hour
MFC	Mercury filter cake – material left on filter after MRF is bled off
mg/L	Milligrams per litre
mg/m³	Milligrams per metre cubic
ML	Megalitre
Mn	Manganese
MRF	Mercury removal filtrate
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure

NOx	Oxides of Nitrogen
NH	Nyrstar Hobart
NPP	Nyrstar Port Pirie
OAP	Old acid plant
Pb	Lead
PG	Paragoethite – iron by-product
PM	Preventative maintenance
ppb	Parts per billion
ppm	Parts per million
RIMS	Risk information management system
RL	River level – mean high tide level
SAL	Strong Acid Leaching
SHEQ	Safety Health Environment and Quality
SO ₂	Sulphur dioxide
SO₃	Sulphur trioxide
SO ₄	Sulphate
SWL	Standing water level
t	Tonnes
TGS	Tail gas scrubber
TSPM	Total suspended particulate matter
TSS	Total suspended solids
μg	Micrograms
μg/g	Micrograms per gram
μg/m³	Micrograms per cubic meter
Zn	Zinc

6. APPENDICES

6.1 Appendix 1 – Community Complaints 2022 – 2024

Date raised & RIMS ref	Туре	Nature of contact	Nyrstar response
1/06/2022 CTC-1742	Noise	Resident visited the site to complain of noise that occurred the early hours of the morning of 1 June. Describing the noise as a "doof doof" sound. She said that it woke her up at 2 am, and it kept going until approximately 4 am.	The resident was questioned about the noise, and we discussed why it is important for community members to bring these matters to Nyrstar's attention. They did not want to leave a number for feedback, however they were informed that we may have a community meeting coming up soon, and if she would like to come along, feedback on the matter would be provided then. They normally attend the community meetings.
21/07/2022 CTC-1750	Noise	Noise complaint was received due to steam venting	Contacted stakeholder to discuss concerns and identified that during the current TAR, it is in plan to replace SH24 and add a tricot to the other vent.
9/09/2022 CTC-1766	Odour	A resident of Lutana called the EPA at approximately 5:15 pm on the Friday evening to complain of "sulphuric acid odour". The EPA officer reported that the complaint stated that the odour had been an issue for 2 days.	Discussed the matter with the EPA officer. Informed them of the response from the ERO's. Informed him that there was an environmental advisor still on site who was investigating. The area of the resident was attended at approximately 6:30pm and could not pick up on odour - however wind conditions etc may have changed. Further information was put into an email and send through to our regulating officer. The ERO's rang the control rooms to make enquiries. They also called Impact, as it had been noted earlier in the day that Impact seemed to be more odorous than usual. Impact confirmed they were processing a new blend and it smelt more than usual.
16/09/2022 CTC-1772	Other	The site's EPA regulating officer called to pass on a complaint made by a Qube employee. The complaints were: Washing down of the boat deck into the river Washing down of the wharf apron into the river.	Discussed the issue with the Wharf Superintendent and the Wharf Supervisor. Inspected the wharf apron for holes, drainage issues etc. Responded to the EPA by email.
9/11/2022 CTC-1780	Odour	Resident contacted the ERO's on Wednesday evening at approximately 9 pm to complain of a bad smell.	The Environmental Principle contacted the resident to discuss further. Talking about the odour and how the site had been dealing with some odour issues related to Impact Fertilisers. It was mentioned that the odour may continue for a little while. The resident also mentioned noise from the PA, but understood this was for safety precautions. Finished by providing contact information should the resident need to make contact again.
21/03/2023 CTC-1788	Noise	Resident of East Risdon contacted the site to complain about a high pitch squealing noise coming from the site. The noise was not consistent, it would	Contacted Roast and Wharf to discuss. Both departments were going to organise for plant inspections to be completed to see if they could locate the noise source.

		come and go. They stated that it sounded like metal on metal grinding.	It was thought that the noise may be emanating from C8 conveyor, this was confirmed at a later date when the resident called to let us know the noise was back. Maintenance was already planned for a later date.
31/03/2023 CTC-1739	Noise	Resident called to complain about the noise arising from the use of the Roast SO ₂ alarm. Whilst they acknowledged that an alarm is required, their concerns were around the duration of the alarm, and the lack of alternative means for alerting workers of the issue.	The Environment team called the resident to outline the reason for the siren sounding and the important nature of the alarm, stating why it needs to go off and why it is used rather than using pagers. The duration of the alarm was also explained to the resident.
06/06/2023 CTC-1812	Noise	Resident of Derwent Park Road contacted the EPA to complain of general noise. An aspect of the noise complaint was truck movements at night time.	Sent EPA information regarding the movement of Toll trucks at night time.
07/07/2023 CTC-1816	Noise	Noise complaint was raised overnight, describing an intermittent roaring noise emanating from the site. Resident stated the noise sounded like an "off-balance washing machine". Resident contacted the EPA who passed on the complaint to NH.	Production departments were contacted, discussing any possible sources of noise which may match this description. No noise sources were identified to match this description. At the time of the complaint, the community noise monitor closest to the complainant on Delwood Drive showed no significant increase in dBa. This information was passed onto the EPA.
09/07/2023 CTC-1821	Noise	Resident of Lindisfarne contacted the site to complain about a noise they believe is being emitted from the NH site. The noise is intermittent in nature and occurs at varying times during the day. The noise consists of an intrusive rising and falling low frequency noise, sounding similar to diesel powered earth moving machinery.	Environment team contacted resident to gain some more information on the noise. Multiple emails were exchanged between NH and the resident. It was reported that the noise is present on a daily basis, which indicates it may be part of day-to-day processes, either at NH or from an alternative industrial source.
12/07/2023 CTC-1818	Noise	Resident of Lutana contacted the site to complain about excessive noise. They stated that it had been going for a couple of weeks and described it as: Blown flange, fan, worn bearing, electric motor and a plane going overhead.	#5 FBR was shut down at the time, so Roast was contacted. It took approximately 24 hours to recognise that the noise was being emitted by the Start-up Scrubber fan. The resident was contacted by the Environment team and informed that the noise source had been tracked down, and that the part of the plant which was making this noise was planned to be shut down on the afternoon of 14/07/2023. The resident called late on the afternoon of 14/07/2023 and left a voice message saying the noise had ceased.
16/09/2023 CTC-1823	Noise	Complainant called up raising concerns about noise over the weekend.	Complainant made initial contact with Emergency Response Officers (EROs) over the weekend. Senior Environmental Advisor returned the call on Sunday morning. Elevated noise was due to venting of steam as a result of a shutdown in the Leach department. Noise data was provided to the EPA on 19/09/2023.

10/10/2023 CTC-1843	Noise	Resident of Lutana contacted site to complain about steam venting noise and noise from the Start-up Scrubber.	Resident complained multiple times over the course of the major shutdown of the #6 roaster, which took place in October 2023, regarding steam venting noise and noise from the Start-up Scrubber. The sources of the noises were discussed with the resident.
13/10/2023 CTC-1845	Noise	Resident of East Risdon contacted the Environment team to inform that the squeal they had previously complained about had returned.	Source of the noise was already known so was investigated efficiently. On October 17 th maintenance re-tensioned the drag line in the C8 system. Complainant confirmed that the noise had stopped.
14/11/2023 CTC-1846	Noise	Resident of East Risdon contacted site to inform that the noise they had complained about in the past had started up again.	Leach operations were contacted who confirmed they were using C8. They ceased using it almost immediately.
04/12/2023 CTC-1844	Noise	Nearby resident complained of steam venting noise.	Immediately went to Roast to determine what was happening. The steam venting noise was a result of regular weekly testing the steam turbines, which occurs most Monday's. Complainant was given this information.
22/12/2023 CTC-1840	Noise	Resident of East Risdon contacted site over excessive noise. Noting a high pitched noise had been running since the early hours of the morning.	High pitch noise was found to be coming from C8 which was running between 4:20am and 8:20am. Leach team leader was contacted who was going to pass on to the department that the conveyor system was not to be ran during the night. Leach Maintenance confirmed that the chain and wear strips were going to be replaced in January 2024.
31/12/2023 CTC-1842	Noise	Emergency Response Officers were contacted by a Lutana resident regarding steam venting noise.	The feed rate on #6FBR was increased resulting in high steam pressures. This caused a safety vent to open allowing the pressure to return to operating requirements. Roaster feed was lowered during this time. Steam was venting for approximately 5 minutes until the valve seated.
18/01/2024 CTC-1852	Noise	Resident of Lutana contacted Environmental Protection Authority to complain about steam venting noise.	Cause of noise was found to be venting of steam and utilisation of steam turbine system, maintenance was required on the electric duty system, as such the emergency system was required to be used. Explanation was provided to the EPA
28/02/2024 CTC-1869	Noise/ Air Quality	Resident of Lutana contacted site Emergency Response Officers to complain of SO ₂ alarm and to report fallout visible on resident's CCTV system.	Complainant informed no major event occurring at site, SO ₂ alarms ended approximately 20 minutes later, investigation into nature of fallout was launched, no compliance breach was found on monitoring network. Feedback provided to complainant at time of complaint.
29/02/2024 CTC-1870	Noise	Resident of Lutana contacted site Emergency Response Officers to complain about venting noise.	Noise source investigated, most likely noise from a steam leak above the Roast control room, to be repaired in the morning. Feedback provided to complainant at time of complaint.
18/03/2024 CTC-1883	Air Quality	Resident of Lutana contacted EPA to complain of dust from 18-21 March 2024	Weather data and on site monitoring data was provided to the EPA. Source of dust was confirmed to not be associated with excavation works at back of site based on prevailing wind conditions and continual monitoring at that site. As complaint was directed to EPA, no additional feedback was provided to complainant.
3/4/2024 CTC-1874	Noise	Resident of Lutana contacted EPA to complain of noise from onsite PA system.	EPA contacted site owner to discuss use of PA. Necessity for safety was discussed and reaffirmed commitment to minimise use of PA system to essential application. Complaint made anonymously, no response could be provided to complainant.
9/4/2024 CTC-1882	Noise	Resident of Lutana contacted EPA to complain of venting noise.	Source of noise investigated, no venting at the time, concrete crushing was taking place at the western side of the work site and may have contributed to the noise at the time, venting

			was scheduled in the upcoming period, specific times were provided to the EPA. As complaint was directed to EPA, no additional feedback was provided to complainant.
17/4/2024 CTC-1884	Air Quality	Resident of Lutana contacted EPA on 17/4/2024 and 29/04/2024 to complain of "acidic fall-out", claiming that Nyrstar Hobart and/or a neighbouring industrial site are performing some action every Saturday resulting in the aforementioned fall-out.	EPA requested weather data for evening of 16/4/2024 and 27/4/2024, all requested data was provided to support their investigation. As complaint was directed to EPA, no additional feedback was provided to complainant.
8/06/2024 CTC-1892	Noise	Resident of East Risdon site owner to complain of loud squeal/screech.	Noise investigated and found to be result of running C4 conveyor belt empty. Feed was put into C4 and the noise was resolved. However, complaint was repeated 4 days later (12/06/2024). It was found C4 had been allowed to run empty on and off several times in this period. Request made to production team to not run conveyor empty, issue reported that C4 conveyor tends to become bogged if stopped. Future noise can be mitigated by adding feed to empty belt.
10/10/2024 CTC-1924	Noise	Resident of Lutana contacted EPA to complain of venting noise and alarm going off in early morning.	Investigation revealed there was an incident in Roast resulting in elevated SO ₂ emissions, triggering the alarm between approximately 3am to 3:42am. Alarm confirmed to be a necessary safety system for onsite personnel. No venting was occurring at the time of the complaint, but several actions that may have caused a comparable noise were investigated. Noise detection data was sent to the EPA to assist in their investigation. As complaint was directed to EPA, no additional feedback was provided to complainant.
17/10/2024 CTC-1923	Noise	Resident of Lutana contacted both site owner and EPA to complain of steam venting noise.	Information provided to the EPA as requested. Investigation indicated that noise was due to testing #6 steam safety valves on the day, resulting in 5 separate 1-2 minute events between 10:08am - 11:19am. Information was provided to complainant.
23/10/2024 CTC-1918	Air Quality	Resident of Lutana contacted site owner via website contact portal to complain of dust accumulation along north facing windows and intermittent noise, particularly at night.	Dialogue entered into with complainant, discussed possible causes and likelihood of repeat. Complainant advised satisfied with the response.
17/11/2024 CTC-1919	Air Quality	EPA representative contacted site owner on behalf of Lutana resident to complain of sulphur smell.	Investigation revealed that SO_2 emissions from site may have been elevated due to wind direction from #5 roaster through the start-up scrubber. Peak of 15 ppb SO_2 was detected at Tennis Courts monitor between 11:30am and 1:30pm. Site instrumentation team requested to bump check and calibrate SO_2 monitors to confirm accuracy. Further information provided to EPA as requested.

6.2 Appendix 2 – Notifiable and Reportable Environmental Incidents 2022 – 2024

RIMS No. & Date	Incident summary	Cause(s)	Summary of corrective actions
HEN-665727 22/01/2022	During a start-up of #6 Fluidised Bed Roaster, elevated concentrations of SO ₂ were emitted from the Foreshore Stack. At 5:10pm on 22 January 2022, the concentration of SO ₂ , calculated as a 60 minute rolling average at the Technopark community monitor exceeded the maximum ground level concentration (0.020 ppm), specified within Condition A2 of The Permit as varied	The failure of one of the two primary saltwater pumps, and the failure of one of the two booster pumps resulted in insufficient scrubbing capacity to adequately strip SO_2 from the gas stream, resulting in an increase in SO_2 exiting from the foreshore stack. The scrubbing capacity through the tail gas scrubbers has declined due to biofouling, primarily from mussels. This has reduced the flow rate through the scrubbing system, reducing the capability of the system in scrubbing SO_2 from the gas stream.	Repair #2 Saltwater Pump. Repair #2 Booster Pump. Implement systems to confirm the availability of salt water supply pumps. Return saltwater supply system to design specification.
HEN-666130 23/01/2022	The High-Volume Air Sampler which measures total suspended particulate matter at 'Risdon Road North' was scheduled to run between 7 am Sunday 23/01/22 and 7 am Monday 24/01/22 for the regulatory 24 hour period that occurs once every six days as stipulated in Condition A8 of The Permit as varied. Laboratory staff were to collect the sample on 24/01/22 however the instrument displayed a fault and had a total run time of 4 minutes.	An instrument error occurred due to either the blower not working properly, or an issue with power supply to the instrument (either high or low voltage).	Investigate options for online alarm system across all four monitors to detect voltage upsets, operational capacity or failures and if feasible, implement. Implement power safeguard option to prevent failures to monitors based on power supply.

HEN-670113 06/03/2022	On 06/03/2022 a GLC of lead in air of 0.00202 mg/m³ was recorded at the RRN monitoring site. This value increased the RRN 90 day average lead GLC to 0.00156 mg/m³, exceeding the emission limit of 0.0015 mg/m³ set out in The Permit as varied	Increased lead in feed materials has resulted in an increase in lead in by-products produced and moved around the site. The storage, processing and handling of these lead bearing materials results in fugitive emissions.	Increase monitoring at RRN. Increased plant inspections looking for leaks and dusting. Repair infrastructure where required and improved cleaning and housekeeping in the plant. Improve moisture control on PG. Investigate dust suppression systems, such as application of chemical suppressants to roadways and fog cannons to be used during out loading of by-products.
HEN-675893 05/05/2022 This incident was reportable under the conditions of The Permit as varied, however was not a non-compliance	Over a 16 hour and 50 minute period starting at 3:20pm on 05/05/2022, 100mm of rain was recorded at NH. As a result 2,191.2 m³ of untreated stormwater overflowed into the Derwent Estuary for a period of 8 hours commencing at 7:00am 06/06/2022. Analysis of rainfall data showed a greater than 20% Annual Exceedance Probability (AEP) rain event occurred during the incident period.	The infrastructure was not sufficient to deal with the amount of water which was generated during the recorded 20% AEP rainfall event. These heightened conditions in the catchment overwhelmed multiple sections of the plant. The contaminated water pond is operating at reduced capacity due to the build-up of sludge in the pond. The B3 sump pump worked well until the peak of the rainfall event, when the water level increased to 100% the pump motor was flooded. The two pumps (#5 and #6) within A drain had been pumping throughout the whole rainfall event and had no issues reported. It was considered that the pumps were unable to keep up with the volume of water generated. The wharf ponds were overwhelmed by the volume of water despite significant actions to reduce this volume. A recently installed pipe on the river side of the pond blocked water from flowing over the spillway. Water flowed onto the road before entering the river at the northern corner of the wharf ponds.	Investigate the purchase of additional portable petrol pumps which could be deployed during future significant rainfall events. Complete the design of the project for CWP sludge removal. Investigate if pumping the wharf ponds to Lake Loogana during a significant rain event is feasible. Currently the wharf ponds are pumped to the CWP only. Clear the wharf ponds spillway to reinstate that overflow point.
HEN-696369 18/12/2022	Routine mixing zone monitoring was taking place on 18 December 2022. At monitoring location OF42, at a depth of 4.5m, a pH reading of 6.5 was recorded. The contractor operating the equipment continued to lower the instrument, recording readings of less than pH 7 until a depth of 8m where the	The low pH conditions recorded on 18 December 2022 were due to the shutdown of the #5 Fluid Bed Roaster (FBR) and the #5 acid plant. The shutdown was a planned event in order to repair a leaking pump in the #5 acid plant. It is common for the pH in outfall to be lower than usual for short periods of time during the shutdown (and the subsequent start-up) of the roasters. Feed was ceased to #5 FBR and commenced blow down during this time the acid plant is shut down and as residual sulphur burns out of the roaster bed material the untreated gas is sent to the foreshore scrubbers. Though when a roaster is holding at 500°C during a cool down a bump is required every 12 hours. Bumping involves an injection of 25,000 m³ of air every 12 hours for a 2 minute period. This process stops the roaster bed from fusing requiring a manual dig out, however	Cease the practice of bumping #5 FBR to the foreshore whilst #6 FBR is online. Alter shut-down and start-up procedures for #5 FBR and #5 acid plant. Investigate options for managing excess gas from #6 FBR/acid plant shut downs. Review data and collect additional data to assess tidal conditions during which

HEN-725080 21/10/2023– 22/10/2023	pH increased to above 7. The lowest pH recorded was 6.4 at a depth of 5.6-6.5m. The Hydrolab was recalibrated and monitored location OF47. All pH readings at monitoring locations OF40, OF41 and OF 47 were above a pH of 7. Over a 5 hour period starting at 11:30 pm on 21/10/2023, 30.3 mm of rain was recorded at NH. As a result 9 m³ of untreated stormwater	generates SO ₂ . At 8:34am #5 FBR was bumped, and the pH of the outfall ranged from 1.87 to 3.39 for a 15 minute period with a median of 1.93. Monitoring of OF42 was completed between 8:45 – 9:00am and the pH of less than 7 was recorded. The pumping infrastructure in the B3 sump was insufficient to deal with the amount of water which was generated during the recorded 20% AEP rainfall event. The B3 sump pump operated as designed until the peak of the rainfall event, when the water level increased to 100% the pump motor was flooded. A supplementary petrol powered pump was deployed and ran throughout the	optimal mixing of the outfall occurs within the estuary. Assess options for preventing B3 sump trips due to motor being submerged
This incident was reportable under the conditions of The Permit, however was not a non-compliance	overflowed into the Derwent Estuary from the B3 sump. Analysis of rainfall data showed a greater than 20% Annual Exceedance Probability (AEP) rain event occurred during the incident period.	overflow period. This reduced the volume that overflowed to the estuary.	
HEN-729181 13/12/2023- 14/12/2023	Over a 9 hour period starting at 8 pm on 13/12/2023, 19.5 mm of rain was recorded at NH. As a result 7.5 m³ of untreated stormwater overflowed into the Derwent Estuary from the B3 sump.	The pumping infrastructure in the B3 sump was insufficient to deal with the amount of water generated during the rainfall event. The rate of flow of stormwater into the B3 Sump exceeded the pumping capacity of the duty and supplementary petrol pump which was deployed and ran throughout the overflow period.	Replace cap on B2 Drain line. Clean B2 Drain between Risdon Road and B2 Sump pit via high pressure water blasting. Review B2 Catchment and make recommendations for improvement. Rectify overflow points on A1 Drain line.
HEN-740812 29/07/2024	Stack testing reports identified that during the previous 6 month testing window, concentration of cadmium exiting the stack exceeded emission limit specified in The Permit	Testing was conducted on the morning of 3/6/2024 and concentration of cadmium emitted during stack test window found to be 1.2 mg/m³, exceeding A1 emission limit. An investigation was undertaken, finding that the cause of the high emission event was insufficient scrubbing efficiency owing to several contributing factors: • Scrubber filter is too small for the housing. • Scrubber filter was found to be badly damaged and full of holes. • The rubber water hose is worn out and degrading	Spare filter requisitioned. Stack internals and fins inspected for blockages or damage. Verified correct parts used per design of scrubber, and that capacity of scrubber is fit for purpose. Replaced/repaired scrubber tank drain valve solenoid.

HEN-751742 13/11/224	Cadmium stack testing revealed elevated cadmium result in the exhaust fumes	Testing was conducted on 13/11/2024 and concentration of cadmium emitted during stack test window was found to be 2.2 mg/m³, exceeding A1 emission limit. An investigation was undertaken, finding that the previous contributing factors had been addressed, the following potential causes were put forward: Over Fluxing during stack testing Scrubber Efficiency. Scrubber fins blocked	Flocculant trailed to determine if it can be used to improve scrubbing efficiency. Regular cleaning schedule for scrubber tank and pigtails developed. Scrubber internals have been inspected and found to be clear of buildup or restrictions. Investigations into the Cadmium scrubber efficiency and the sufficient amount of flux to be used in the pot are ongoing.
HEN-748103 08/12/2024	Over a 4 hour period starting at 10 am on 07/12/2024 48.8 mm of rain was recorded at NH, as a result 1.44 m³ of untreated stormwater overflowed into the Derwent Estuary from the Wharf Area Catchment, from a location that was not a nominated overflow point. Analysis of rainfall data showed a greater than 20% Annual Exceedance Probability (AEP) rain event occurred during the incident period	During the recorded 20% AEP rainfall event, it was found that an open spoon drain intended to channel water to the southern of the two stormwater ponds was partially obstructed with solids, causing a diversion of some of the drain flow across open ground and into the Wharf Roadway Catchment. The infrastructure in this area was overwhelmed, resulting in an overflow into the estuary from a location that was not a nominated overflow point. This was considered by the regulator to be non-compliant with condition SW2 of The Permit.	Obstruction within open spoon drain was excavated on 16/12/2024.

6.3 Appendix 3 – The Permit as Varied

PERMIT AS VARIED

Activity name: **HOBART ZINC SMELTER**

Environmentally Relevant Activity: The operation of a zinc smelter (ACTIVITY TYPE:

Metallurgical Works)

HOBART ZINC SMELTER, 300 RISDON ROAD

LUTANA TAS 7010

Permit No. 3314	Date Granted 28 June 1996	Granted by Director of Environmental Management
Varied by Environment Protection Notice No.	Issued Date	Issued to
7043/5	11 April 2019	Nyrstar Hobart Pty Ltd ACN 124 818 113
7043/6	05 February 2024	Nyrstar Hobart Pty Ltd ACN 124 818 113

PURPOSE OF THIS DOCUMENT

This "Permit as varied" document contains a consolidated list of all Permit conditions including variations to the Permit or Permits that have been caused by the issuing of an environment protection notice or notices referred to above.

DEFINITIONS

Unless the contrary appears, words and expressions used in this document have the meaning given to them in Schedule 1 of this document and in the *Environmental Management and Pollution Control Act 1994* (EMPCA). If there is any inconsistency between a definition in the EMPCA and a definition in this document, the EMPCA prevails to the extent of the inconsistency.

REQUIREMENTS

The person responsible for the activity must comply with the varied permit conditions as set out in Schedule 2 of this document.

INFORMATION

Attention is drawn to Schedule 3 of this document, which contains important additional information.

This page intentionally left blank.

Table Of Contents

dule 1: Defi	nitions	5
dule 2: Con	ditions	9
	Quantities	
1,14,11114,111	Q1 Regulatory limits	
General	(g,	
General	G1 Access to and awareness of conditions and associated documents	
	G2 Incident response	
	G3 Proposed change to activity	c
	G4 Change of ownership	
	G5 Change of responsibility	
	G6 Complaints register	
	G7 Annual Environmental Review.	
	G8 Additional annual reporting requirements	
	G9 Amendment of required plans and reports	
A tmoonbo		
Aunosphe	ric	I I 1 1
	A2 Maximum ground level concentrations	
	A2 Maximum ground level concentrations	
	_	
	A4 Stack monitoring requirements.	
	A5 Stack monitoring reports	
	A7 Maintain an atmospheric model	
	A8 Ambient particulate monitoring	
	A9 Community sulphur dioxide monitoring	
	A10 Odour management	
	A11 Control of dust emissions.	
	A11 Control of dust emissions A12 Lead Emissions Control Plan	
	A13 Interim maximum ground level concentrations	
ъ.		
Decommis	sioning And Rehabilitation	
	DC1 Assessment of Site Contamination	
	DC2 Decommissioning and Rehabilitation Scope of Works	
	DC3 Notification of cessation	
	DC4 Decommissioning and Rehabilitation Plan	
	DC5 Implementation of the DRP	
	DC6 Temporary suspension of activity	
Groundwa	ter	
	GW1 Groundwater Management Plan	
	GW2 Groundwater Monitoring Bores	
	GW3 Groundwater monitoring bores	
	GW4 Groundwater Monitoring	
Hazardous	Substances	
	H1 Storage and handling of hazardous materials	
	H2 Spill kits	19
	H3 Inventory of hazardous materials	
	H4 Progressive improvement of storage and handling of hazardous materials.	19
Monitoring	J	20
•	M1 Samples and measurements for monitoring purposes	
	M2 Nominated Discharge Point monitoring	
	M3 Exceedance of emission limits	21
	M4 Derwent Estuary Mixing Zone Monitoring	21

M5 Estuarine water, sediment and biota monitoring	22
Noise Control	
N1 Noise emission limits	22
N2 Community monitoring of noise emissions	22
N3 Noise survey requirements	
N4 Noise survey method and reporting requirements	
N5 Maintain a noise model	
Stormwater Management	
SW2 Storm event discharges	
Waste Management	
WM1 Non-process Waste Management Plan	
WM2 Temporary Stockpiling of Jarosite	
WM3 Reprocessing of waste materials	
WM4 Treatment of mercury filter cake for disposal	
Wastewater Management	25
WW1 Management of wastewater	
WW2 Discharge of sewage	
WW3 Discharge limits	26
Schedule 3: Information	27
Legal Obligations	27
LO1 EMPCA	27
Other Information	
OI1 Notification of incidents under section 32 of EMPCA	
OI2 Release of Relevant Information	
OI3 Waste management hierarchy	27
Attachments	
Attachment 1: The Land (modified: 15/03/2023 11:54)	1 page
Attachment 2: Nominated Exhaust Points (Source Nyrstar Hobart Pty Ltd) (modified: 09/0	
07:59)	
Attachment 3: Nominated Ambient TSPM Locations	1 page
Attachment 4: Nominated Community GLC SO2 Monitoring Locations	1 page
Attachment 5: Groundwater Monitoring Bores	6 pages
Attachment 6: Derwent Estuary Mixing Zone	1 page
Attachment 7: East Risdon Community Area	
Attachment 8: Nominated Community Noise Monitoring Locations	1 page
Attachment 9: Discharge Points to the Derwent Estuary	1 page

Schedule 1: Definitions

Activity means any environmentally relevant activity (as defined in Section 3 of EMPCA) to which this document relates, and includes more than one such activity.

Annual Exceedance Probability means the probability that a given rainfall total accumulated over a given duration will be exceeded in any one year, as defined by the Bureau of Meteorology's latest design rainfall statistical dataset.

Authorized Officer means an authorized officer under section 20 of EMPCA.

Background Noise Level is the level that exceed 90% of the time of each measurement interval and is measured in the absence of the subject site noise.

Control Location (Noise) means a location chosen to represent the general ambient sound without contribution from noise sources at the activity.

Controlled Waste has the meaning described in Section 3(1) of EMPCA.

Decommissioning means the dismantling and removal of structures and equipment and the removal or control of pollutants or processes that may cause environmental harm undertaken subsequent to the cessation of the activity or part thereof.

Decommissioning and Rehabilitation Scope of Works or **DRSW** means the document titled *Decommissioning and* Rehabilitation - *Scope of Works*, by Nyrstar Hobart Pty Ltd, dated 26 July 2022 and includes any amendment to or substitution of this document approved in writing by the Director.

Derwent Estuary Mixing Zone is the area which extends 200 metres upstream, 200 metres downstream and 200 metres northeasterly into the Derwent Estuary from the activity's Foreshore (Tail Gas Scrubber) Stack Outfall diffuser; and is the area as shown in Attachment 6 of this Notice.

Director means the Director, Environment Protection Authority holding office under Section 18 of EMPCA and includes a delegate or person authorised in writing by the Director to exercise a power or function on the Director's behalf.

Dominant or Intrusive Noise Characteristics means any noise characteristic that contributes to a noise being considered louder than would be indicated by the A-weighted sound pressure level measured, or that exacerbates nuisance or harm caused by the noise.

DRP means Decommissioning and Rehabilitation Plan

Dust Management Plan means the document tiled Nyrstar Hobart Dust Management Plan 2022 (Nyrstar Hobart Doc No. HM-824-02569) and includes any amendment to or substitution of this document approved in writing by the Director.

East Risdon Community Area is the area as shown in Attachment 7 of this Notice.

EMPCA means the *Environmental Management and Pollution Control Act 1994*.

Environmental Harm and **Material Environmental Harm** and **Serious Environmental Harm** each have the meanings ascribed to them in Section 5 of EMPCA.

Environmental Nuisance has the meaning ascribed to it in Section 3 of EMPCA.

Environmentally Hazardous Material means any substance or mixture of substances of a nature or held in quantities which present a reasonably foreseeable risk of causing serious or material environmental harm if released to the environment and includes fuels, oils, waste and chemicals but excludes sewage.

EPA Board means the Board of the Environment Protection Authority established under section 13 of EMPCA and includes a delegate or person authorised in writing by the EPA Board to exercise a power or function on the EPA Board's behalf.

Fuel Burning Emission Source means an emission point that exhausts atmospheric emissions from a boiler that has a heating capacity of 100 megajoules (27.7 Kw) per hour or more.

GLC means Ground Level Concentration.

Groundwater Management Plan or **(GMP)** means the document titled *2022-2025 Groundwater Management Plan*, by Nyrstar Hobart Pty Ltd, dated January 2022 and includes any amendment to or substitution of this document and approved in writing by the Director.

In-Stack Concentration has the meaning ascribed to it in the *Environment Protection Policy (Air Quality)* 2004.

Leachate means any liquid that is either released by or has percolated through jarosite in the temporary secure landfill cell located on The Land.

Noise Measurement Procedures Manual means the document titled *Noise Measurement Procedures Manual*, by the Department of Environment, Parks, Heritage and the Arts, dated July 2008, and any amendment to or substitution of this document.

Noise Sensitive Premises means residences and residential zones (whether occupied or not), schools, hospitals, caravan parks and similar land uses involving the presence of individual people for extended periods, except in the course of their employment or for recreation.

Nominated Ambient TSPM Locations means the following locations: Risdon Road North (42°49'43.05"S, 147°18'48.83"E), at the activity's northern exit; Tennis Courts, Risdon Road (42°50'32.76"S, 147°19'1.17"E); and Birch Road (42°50'9.29"S, 147°18'45.54"E), as depicted in Attachment 3 of this Notice.

Nominated Community GLC SO Monitoring Locations means the following locations: Technopark, Dowsings Point (42°49'23.87"S, 147°18'12.51"E), Goodwood; Tennis Courts, Risdon Road (42°50'32.76"S, 147°19'1.17"E); and Birch Road (42°50'9.30"S, 147°18'45.57"E), as depicted in Attachment 4 of this Notice.

Nominated Community Noise Monitoring Locations means Birch Road (42°50'7.61"S, 147°18'43.77"E) and Delwood Drive (42°50'21.06"S, 147°18'46.79"E), Lutana, and Saundersons Road, East Risdon (42°49'33.69"S, 147°19'11.78"E), as depicted in Attachment 8 of this Notice.

Nominated Discharge Point means the Foreshore (Tail Gas Scrubber) Outfall (42°49'43.67"S, 147°18'59.94"E) to the Derwent Estuary from the effluent treatment plant located on The Land, depicted as TGS Foreshore Outfall in Attachment 9 of this Notice.

Nominated Exhaust Points means the following emission point sources: Anode Casting Plant Exhaust Stack, Cadmium Smelter Plant Stack, Copper Sulphate Crystalliser Plant Vent Stack, Foreshore (Tail Gas Scrubber) Stack, Paragoethite (PG) Dryer Stack, Roaster Baghouse Stack, V1 Furnace Stack, V2 Furnace Stack, Zinc Dust Plant 1 (ZP1) Stack, Zinc Dust Plant 3 (ZP3) Stack, MZR Furnace Stack and MZR Dross Stack; as depicted in Attachment 2 of this Notice.

Nominated Groundwater Monitoring Bores means unless otherwise specified in writing by the Director, the groundwater monitoring bores as depicted in Attachment 5 of this Notice.

Nominated Stormwater Discharge Points means the following points: No. 2 Contaminated Water Pond Outfall (42°49'47.61"S, 147°19'9.84"E), New Town Bay Outfall (42°50'22.69"S, 147°19'7.16"E), B Drain Outfall (42°49'46.09"S, 147°19'5.07"E), C Drain Outfall (42°49'49.41"S, 147°19'12.53"E), Wharf Stormwater Pond Overflow (42°49'58.46"S, 147°19'23.17"E) and Loogana Overflow (42°50'23.18"S, 147°19'18.53"E), as depicted in Attachment 9 of this Notice.

Non-process Waste Management Plan means the document titled *Non-process Waste Management Plan*, by Nyrstar Hobart Pty Ltd, dated May 2017, and any amendment to or substitution of this document and approved in writing by the Director.

Normal Ambient Noise refers to the ambient noise of the receiver location in the absence of the subject site noise. Ambient noise level is measured in L_{Aeq} .

Nyrstar Hobart Procedure: Estuarine Water, Sediment and Biota Sampling means the document titled *Nyrstar Hobart Procedure: Estuarine Water, Sediment and Biota Sampling*, by Nyrstar Hobart Pty Ltd, Document Version: 07, Document No. HP-826-00731, and any amendment to or substitution of this document and approved in writing by the Director.

Person Responsible is any person who is or was responsible for the environmentally relevant activity to which this document relates and includes the officers, employees, contractors, joint venture partners and agents of that person, and includes a body corporate.

Planning Authority means the Council(s) for the municipal area(s) in which The Land is situated.

 PM_{10} means particulate matter with an equivalent aerodynamic diameter of 10 micrometres or less.

Pollutant has the meaning ascribed to it in Section 3 of EMPCA.

Procedure For: Environmental Monitoring in the Loogana-Inshallah Area means the document titled *Procedure For: Environmental Monitoring in the Loogana-Inshallah Area*, by Nyrstar Hobart Pty Ltd, Document Version: 03 Identifying Number HP-826-03536, and any amendment to or substitution of this document and approved in writing by the Director.

Raw Materials means zinc concentrate ores and zinc oxides or calcines.

Reporting Period means the 12 months ending on 31 December of each year.

Review of the Storage and Handling of Environmentally Hazardous Materials or RSHEHM means document titled *Review of the Storage and Handling of Environmentally Hazardous Materials*, version 2, by Nyrstar Hobart Pty Ltd, dated 19 February 2021, and includes any amendment to or substitution of this document and approved in writing by the Director.

Stack Test means the taking of measurements and the collection of samples for analysis from within a chimney, stack or flue.

Stormwater means water runoff as a consequence of a rainfall event, whether surface flow, piped flow, or flow within conduits, including any contaminants collected by the water during its passage.

Stormwater Strategy Report means the document titled *Stormwater Strategy Report*, by Nyrstar Hobart Pty Ltd, dated September 2010 and includes any amendment to or substitution of this document and approved in writing by the Director.

Strainer Backwash Outfall means the wastewater discharge point located at approximately 42°49'46.14"S, 147°18'57.56"E, as depicted in Attachment 9 of this Notice.

The Land means the land on which the activity to which this document relates may be carried out, and includes: buildings and other structures permanently fixed to the land, any part of the land covered with water, and any water covering the land. The Land falls within the area defined by:

- 1 the map shown in Attachment 1 of this Notice; and
- 2 is part of the land covered by Property ID: 7855159.

TSPM means Total Suspended Particulate Monitoring.

Waste has the meaning ascribed to it in Section 3 of EMPCA.

Wastewater means spent or used water (whether from industrial or domestic sources) containing a pollutant and includes leachate and stormwater that is contaminated or potentially contaminated with pollutants or which becomes mixed with wastewater.

Schedule 2: Conditions

Maximum Quantities

Q1 Regulatory limits

- 1 The activity must not exceed the following limits:
 - **1.1** 600,000 tonnes per year of raw materials processed.

General

G1 Access to and awareness of conditions and associated documents

A copy of these conditions and any associated documents referred to in these conditions must be held in a location that is known to and accessible to the person responsible for the activity. The person responsible for the activity must ensure that all persons who are responsible for undertaking work on The Land, including contractors and sub-contractors, are familiar with these conditions to the extent relevant to their work.

G2 Incident response

If an incident causing or threatening environmental nuisance, serious environmental harm or material environmental harm from pollution occurs in the course of the activity, then the person responsible for the activity must immediately take all reasonable and practicable action to minimise any adverse environmental effects from the incident.

G3 Proposed change to activity

- 1 The person responsible must notify the Director in writing prior to implementing any change to the activity authorised by this document that may cause or increase the emission of a pollutant or which may result in environmental harm or environmental nuisance (even temporarily). A change includes, but is not limited to, any of the following:
 - **1.1** an increase in the discharge of a pollutant, or the location of its discharge.
 - 1.2 the construction, installation, alteration or removal of any structure or equipment used in the course of carrying out the activity.
 - **1.3** any clearance of native vegetation or earthworks.
 - **1.4** a change in the quantity or characteristics of materials used in carrying out the activity.
- 2 The notification must be in an approved form and include the following:
 - **2.1** details of the proposed change;
 - 2.2 an assessment of the environmental impacts that may result from the change;
 - 2.3 any relevant approvals held by the person responsible; and
 - **2.4** any advice from the relevant planning authority to the effect that approval is not required.
- 3 The person responsible must provide additional information as requested by an Authorized Officer.
- 4 The proposed change must not be implemented until the Director has confirmed in writing that they are satisfied that no other approval or variation of this document is required.
- 5 For the avoidance of doubt, a notification of a proposed change under this provision is not required if the proposed change is part of a referral to the EPA Board for assessment under sections 24, 25 or 27 of EMPCA.

G4 Change of ownership

If the owner of The Land upon which the activity is carried out changes or is to change, then, as soon as reasonably practicable but no later than 30 days after becoming aware of the change or intended change in the ownership of The Land, the person responsible must notify the Director in writing of the change or intended change of ownership.

G5 Change of responsibility

If the person responsible for the activity intends to cease to be responsible for the activity, that person must notify the Director in writing of the full particulars of any person succeeding him or her as the person responsible for the activity, before such cessation.

G6 Complaints register

- A public complaints register must be maintained. The public complaints register must, as a minimum, record the following detail in relation to each complaint received in which it is alleged that environmental harm (including an environmental nuisance) has been caused by the activity:
 - 1.1 the date and time at which the complaint was received;
 - 1.2 contact details for the complainant (where provided);
 - **1.3** the subject-matter of the complaint;
 - 1.4 any investigations undertaken with regard to the complaint; and
 - **1.5** the manner in which the complaint was resolved, including any mitigation measures implemented.
- 2 Complaint records must be maintained for a period of at least 3 years.

G7 Annual Environmental Review

- Unless otherwise specified in writing by the Director, a publicly available Annual Environmental Review for the activity must be submitted to the Director each year within three months of the end of the reporting period.
- 2 Without limitation, each Annual Environmental Review must include the following information:
 - **2.1** a statement by the General Manager, Chief Executive Officer or equivalent for the activity acknowledging the contents of the Annual Environmental Review;
 - **2.2** subject to the *Personal Information Protection Act 2004*, a list of all complaints received from the public during the reporting period concerning actual or potential environmental harm caused by the activity and a description of any actions taken as a result of those complaints;
 - **2.3** details of environment-related procedural or process changes that have been implemented during the reporting period;
 - 2.4 a summary of the amounts (tonnes or litres) of both solid and liquid wastes produced and treatment methods implemented during the reporting period. Initiatives or programs planned to avoid, minimise, re-use, or recycle such wastes over the next reporting period should be detailed;
 - 2.5 a summary of the quantities of controlled wastes being held on The Land;
 - 2.6 details of all non-trivial environmental incidents and/or incidents of non compliance with permit or environment protection notice conditions that occurred during the reporting period, and any mitigative or preventative actions that have resulted from such incidents:

- 2.7 a summary of the monitoring data and record keeping required by these conditions. This information should be presented in graphical form where possible, including comparison with the results of at least the preceding reporting period. Special causes and system changes that have impacted on the parameters monitored must be noted. Explanation of significant deviations between actual results and any predictions made in previous reports must be provided;
- 2.8 identification of breaches of limits specified in these conditions and significant variations from predicted results contained in any relevant management plan, an explanation of why each identified breach of specified limits or variation from predictions occurred and details of the actions taken in response to each identified breach of limits or variance from predictions;
- a list of any issues, not discussed elsewhere in the report, that must be addressed to improve compliance with these conditions, and the actions that are proposed to address any such issues;
- **2.10** a summary of fulfilment of environmental commitments made for the reporting period. This summary must include indication of results of the actions implemented and explanation of any failures to achieve such commitments; and
- **2.11** a summary of any community consultation and communication undertaken during the reporting period.

G8 Additional annual reporting requirements

- 1 Annual Environmental Reviews submitted in accordance with these conditions must include the following additional information:
 - **1.1** Reporting on the progress of *implementing* the actions detailed in the *Review of the Storage and Handling of Environmentally Hazardous Materials*.

G9 Amendment of required plans and reports

- 1 The plans and reports required by these conditions must be amended to address any matter required by the Director, as advised by notice in writing.
- 2 Amended plans and reports must be resubmitted within the timeframe that the Director specifies.

Atmospheric

A1 Stack emission limits

1 The in-stack concentrations in emissions from all nominated exhaust points of substances listed in Column 1 of table A1 below must not exceed the limits specified in Column 4 when measured in the units specified in Column 2 and adjusted to the reference gas value specified in Column 3.

2 Table A1: Atmospheric Emission Limits

Column 1: Substance	Column 2 : Unit of Measure	Column 3: Reference Gas Value	Column 4: Emission Limit
Metals - antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), tin (Sn), vanadium (V). or any compound thereof.	mg/m ³		5 for combined total, 1 for Cd or Hg
Oxides of nitrogen (NO _x)	g/m ³	7% oxygen by volume for fuel burning emission sources	2 (as NO ₂)
Particulate matter	mg/m³ dry gas at 0°C and 101.325 kPa	7% oxygen by volume for fuel burning emission sources	100
Sulphur dioxide (SO ₂)	g/m³ dry gas at 0°C and 101.325 kPa		7.2
Sulphur trioxide (SO ₃)	mg/m ³		100

3 Notwithstanding the above, the limit for SO₂, when measured by the Continuous (air) Emission Monitoring device, is not considered breached unless the limit is exceeded continuously for greater than 15 minutes.

A2 Maximum ground level concentrations

1 Unless otherwise specified in writing by the Director, from 12 months after the date of issue of EPN 7043/6 the maximum ground level concentration (GLC) of the substances listed in Column 1 of Table A2 below must not exceed the GLC specified in Column 2 or Column 3, under the conditions specified in Column 4, beyond the boundary of The Land.

2 Table A2: Maximum Ground Level Concentrations

Column 1: Substance	Column 2: Ground Level Concentration in ppm		Column 4: Averaging period
Lead (Pb)		0.0015	90 day average
Sulphur Dioxide (SO ₂)	0.10		1 hour average
Sulphur Dioxide (SO ₂)	0.020		24 hour average

A3 Stack testing facilities

- 1 The following stack testing facilities must be available at all nominated exhaust points when undertaking stack testing required by these conditions:
 - 1.1 sampling positions must be in accordance with Australian Standard AS 4323.1 (Stationary source emissions selection of sampling positions), or as approved in writing by the Director;

- safe sampling platforms must be located to allow access to the sampling positions and safe access to these sampling platforms must be provided; and
- 1.3 all necessary services required for the test method prescribed must be provided.

A4 Stack monitoring requirements

1 Unless otherwise specified in writing by the Director, stack tests must be undertaken in accordance with table A4:

1.1 Table A4: Emission Point Source Monitoring

Nominated Exhaust Point	Monitoring Parameters	Monitoring Frequency
Foreshore (Tail Gas Scrubber) Stack	SO ₃ , NOx, Particulates	6 monthly
Anode Casting Plant Exhaust Stack	Metals and Particulates	6 monthly
Cadmium Smelter Plant Stack	Metals and Particulates	6 monthly
Copper Sulphate Crystalliser Plant Vent Stack	Metals and Particulates	6 monthly
Paragoethite Dryer Stack	Metals and Particulates	6 monthly
Roaster Baghouse Stack	Metals and Particulates	6 monthly
V1 and V2 Furnace Stacks	Metals and Particulates	6 monthly
Zinc Dust Plant 1 Stack	Metals and Particulates	6 monthly
Zinc Dust Plant 3 Stack	Metals and Particulates	6 monthly
MZR Furnace Stack	Metals and Particulates	6 monthly
MZR Dross Stack	Metals and Particulates	6 monthly

- **1.2** Monitoring for all parameters in the above table must be determined in g/min and mg/m³ and for fuel burning emission sources particulates and NOx must be adjusted to 7% O₂ level.
- **1.3** Metals means the parameters listed in Table 2 In-stack concentrations of the *Environment Protection Policy (Air Quality) 2004.*
- 2 Stack tests must be carried out while the activity is operating under normal conditions.

A5 Stack monitoring reports

- 1 A Stack Monitoring Report(s) must be provided as part of the Annual Environmental Review required by these conditions.
- **2** Each report must include:
 - **2.1** the results of the stack test:
 - **2.2** the date on which the stack test was conducted:
 - **2.3** weather information at the time the stack test was conducted;
 - **2.4** relevant operating conditions including the fuel feed rate at the time the stack test was conducted:
 - 2.5 the stack test methods employed; and
 - **2.6** identification of breaches of limits specified in these conditions, an explanation of why each breach of specified limits occurred and details of actions that have or will be taken in response to each identified breach of limits.

3 Where total particulate matter testing is carried out reporting must be done in accordance with Section 9 of Australian Standard AS 4323.2.2023 Stationary source emissions - Determination of total particulate matter - Isokinetic manual sampling - Gravimetric method, and any subsequent version of the standard.

A6 Continuous Emission Monitoring

A Continuous (air) Emission Monitoring (CEM) device must be installed and maintained in the Foreshore (Tail Gas Scrubber) Stack to continuously record the in-stack concentration of sulphur dioxide (SO₂) at the frequency of at least one reading recorded per minute.

A7 Maintain an atmospheric model

- 1 Unless otherwise approved in writing by the Director, an atmospheric model for the activity must be maintained.
- 2 The model must be updated upon replacement, repair or addition of equipment that is a significant source of atmospheric emissions and where replacement, repair or addition of equipment may increase or adversely alter the level or character of the atmospheric emissions from the activity.
- 3 It is not necessary to re-measure atmospheric emissions unless emission characteristics have changed since a previous measurement accepted by the Director. New or modified atmospheric emission sources must be measured within 6 months of commissioning or re-commissioning the emission sources.

A8 Ambient particulate monitoring

- 1 Unless otherwise approved in writing by the Director, ambient air quality Total Suspended Particulate Monitoring (TSPM) stations must be maintained at the nominated ambient TSPM locations.
 - 1.1 The TSPM stations may be temporarily removed from operations for maintenance and/or calibration purposes. The Director must be advised of the need to temporarily remove the TSPM stations for a time period that is greater than eight (8) hours.
- 2 The TSPM stations must monitor and sample for Total Suspended Particulate and Lead (Pb), at a frequency of a continuous 24 hour period once every six (6) days.

A9 Community sulphur dioxide monitoring

- 1 Unless otherwise approved in writing by the Director, community Ground Level Concentration (GLC) of sulphur dioxide (SO₂) monitoring stations must be maintained at the nominated community GLC SO₂ monitoring locations.
 - 1.1 The community GLC SO₂ monitors may be temporarily removed from operations for maintenance and/or calibration purposes. The Director must be advised of the need to temporarily remove the community GLC SO₂ monitors for a time period that is greater than eight (8) hours.
- 2 The GLC SO₂ monitoring stations must continuously monitor for SO₂ and must be able to produce results that are able to be used to determine one (1) day and one (1) hour averages of SO₂ GLC.

A10 Odour management

The person responsible must institute such odour management measures as are necessary to prevent odours causing environmental nuisance beyond the boundary of The Land.

A11 Control of dust emissions

1 The activity must be undertaken in accordance with the Dust Management Plan.

- 2 Notwithstanding the above, dust emissions from The Land must be controlled to the extent necessary to prevent environmental harm and/or environmental nuisance.
- 3 The person responsible may apply to the Director to vary or substitute the Dust Management Plan. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

A12 Lead Emissions Control Plan

- 1 Unless otherwise approved by the Director in writing, within 12 months of the date of issue of the issue of EPN 7043/6 and at three (3) yearly intervals a Lead Emissions Control Plan must be submitted to the Director for approval. The plan is to have the aim reducing ground level concentrations for lead for the activity, by the extent that is reasonable and practical. This requirement will be deemed to be satisfied only when the Director indicates in writing that the submitted document adequately addresses the requirements of this condition.
- 2 The plan must be prepared in accordance with any reasonable guidelines provided by the Director.
- 3 Without limitation, the plan must include details of the following:
 - **3.1** Expected reduction in ground level concentrations for lead;
 - **3.2** Prioritised (net environmental benefit analysis) actions for the management and/or monitoring of sources of lead emissions;
 - **3.3** A timetable for implementation and completion of actions;
 - **3.4** Measures for determining the success of the completed actions; and
 - 3.5 A reporting program to regularly advise the Director of the results of the plan.
- 4 Once approved the person responsible must act in accordance with the approved plan.
- 5 The person responsible may apply to the Director to vary or substitute the Lead Emissions Control Plan. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

A13 Interim maximum ground level concentrations

- 1 Unless otherwise specified in writing by the Director, for the period of 12 months from the date of issue of EPN 7043/6 the maximum ground level concentration (GLC) for the substances listed in Column 1 of the table A13 below must not exceed the GLC specified in Column 2, under the conditions specified in Column 3 beyond the boundary of The Land.
- 2 Table A13: Interim Maximum Ground Level Concentrations

Column 1: Substance	Column 2: Ground Level Concentration	Column 4: Averaging period
Lead (Pb)	0.0015 mg/m^3	90 day average
Sulphur Dioxide (SO ₂)	0.20 ppm	1 hour average
Sulphur Dioxide (SO ₂)	0.080 ppm	24 hour average

Decommissioning And Rehabilitation

DC1 Assessment of Site Contamination

- Unless otherwise specified in writing by the Director, an evaluation of changes in the extent or degree of contamination of The Land or caused by the activity must be undertaken and a revised Assessment of Site Contamination Report (ASCR) based on the evaluation must be submitted to the Director by 31 October 2021 and at three (3) yearly intervals thereafter.
- 2 The ASCR must include a statement by the General Manager, Chief Executive Officer or equivalent for the activity acknowledging the contents of the ASCR.
- 3 The evaluation of contamination must be done in accordance with the NEPM.
- 4 The revised ASCR must clearly demonstrate whether or not there has been a change in contamination between each evaluation of contamination undertaken.
- 5 A revised ASCR may be submitted in the form of changes to the previous such document or as a substitute ASCR.

DC2 Decommissioning and Rehabilitation Scope of Works

- 1 Unless otherwise specified in writing by the Director, a review of the Decommissioning and Rehabilitation Scope of Works (DRSW) for the activity must be undertaken and a revised DRSW must be submitted to the Director within six (6) months of the Director having approved a revised ASCR required by these conditions.
- 2 The DRSW must include a statement by the General Manager, Chief Executive Officer or equivalent for the activity acknowledging the contents of the DRSW.
- 3 The DRSW must address the contamination identified in the ASCR most recently approved by the Director.
- 4 The DRSW must address any changes to the activity that have the potential to alter the liabilities for the decommissioning of the activity and the rehabilitation of The Land.
- 5 The DRSW must provide details on the progress of any decommissioning or rehabilitation that has taken place.
- 6 The DRSW must provide details of resources, both physical and financial, required for the decommissioning of the activity and rehabilitation of The Land.
- 7 A revised DRSW may be submitted in the form of changes to the previous such document or as a substitute DRSW.

DC3 Notification of cessation

Within 30 days of becoming aware of any event or decision which is likely to give rise to the permanent cessation of the activity, the person responsible for the activity must notify the Director in writing of that event or decision. The notice must specify the date upon which the activity is expected to cease or has ceased.

DC4 Decommissioning and Rehabilitation Plan

- 1 Unless otherwise approved in writing by the Director, a Decommissioning and Rehabilitation Plan (DRP) must be submitted to the Director within 180 days of the notification of permanent cessation of the activity.
- 2 The DRP must:
 - **2.1** be written in accordance with any guidelines provided by the Director; and
 - include details of contamination from the most recently approved ASCR, action proposed by the most recently approved DRSW.

DC5 Implementation of the DRP

- 1 Following permanent cessation of the activity, the decommissioning of the activity and the rehabilitation of The Land must be carried out in accordance with the most recent Decommissioning and Rehabilitation Plan (DRP) approved by the Director.
- 2 The person responsible may apply to the Director to vary or substitute the DRP. Any variation or substitution of the DRP approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

DC6 Temporary suspension of activity

- 1 Within 30 days of becoming aware of any event or decision which is likely to give rise to the temporary suspension of the activity, the person responsible for the activity must notify the Director in writing of that event or decision. The notice must specify the date upon which the activity is expected to suspend or has suspended.
- 2 During temporary suspension of the activity The Land must be managed and monitored by the person responsible for the activity to ensure that emissions from The Land do not cause serious environmental harm, material environmental harm or environmental nuisance.
- 3 If required by the Director, a Care and Maintenance Plan for the activity must be submitted to the Director for approval, by a date specified in writing by the Director. This requirement will be deemed to be satisfied only when the Director indicates in writing that the submitted document adequately addresses the requirements of this condition.
 - **3.1** The plan must be prepared in accordance with any reasonable guidelines provided by the Director.
 - **3.2** Once approved the person responsible must act in accordance with the approved Care and Maintenance Plan.
 - 3.3 The person responsible may apply to the Director to vary or substitute the Care and Maintenance Plan. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.
- 4 Unless otherwise approved in writing by the Director, if the activity on The Land has substantially ceased for 2 years or more, rehabilitation of The Land must be carried out in accordance with the requirements of these conditions as if the activity has permanently ceased.

Groundwater

GW1 Groundwater Management Plan

- 1 Unless otherwise specified by these conditions, or in writing by the Director, the activity must operate in accordance with the approved Groundwater Management Plan (GMP).
- 2 Unless otherwise specified in writing by the Director, a review of the GMP must be undertaken with the aim to reduce groundwater contamination and hydrogeologically isolate The Land from the River Derwent, and a revised GMP must be submitted to the Director for approval by 31 October 2025 and at three (3) yearly intervals thereafter.
- 3 The GMP must contain:
 - **3.1** Prioritised (net environmental benefit analysis) actions for monitoring, management and/or remediation of groundwater;
 - **3.2** Objectives of the prioritised actions;
 - **3.3** Timeframes for the actions to be undertaken and completed;

- **3.4** Measures for determining the success of the completed actions; and
- **3.5** Reporting frequency of any monitoring.
- 4 Once approved the person responsible must act in accordance with the approved plan.
- The person responsible may apply to the Director to vary or substitute the GMP. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice

GW2 Groundwater Monitoring Bores

- 1 Unless otherwise specified in writing by the Director, all new groundwater bores must have an installation and development record, which includes, but is not limited to the following:
 - **1.1** a description of the materials used for construction;
 - **1.2** initial field measurements of the groundwater for conductivity, pH and temperature;
 - 1.3 details of slot screens installed, and the depth to which they were installed;
 - **1.4** depth of gravel packing;
 - **1.5** depth of the bentonite cap;
 - **1.6** details of bore development during pumping (removal of drilling contamination);
 - 1.7 aquifer levels; and
 - **1.8** a detailed geological log.
- 2 The following details must be recorded when sampling groundwater bores:
 - **2.1** standing water level;
 - 2.2 bore volume;
 - **2.3** time of purging;
 - **2.4** sampling time and number; and
 - **2.5** field water quality parameters (including conductivity, pH and water temperature).
- **3** Bore and piezometer placement must be carried out in consultation with and under supervision of a suitably qualified person.

GW3 Groundwater monitoring bores

- 1 Unless otherwise approved in writing by the Director, all nominated groundwater monitoring bores on The Land must be maintained and refurbished where necessary to ensure that they are suitable for continued use.
 - 1.1 In the event a bore is damaged in such a manner that it cannot be refurbished to be made suitable for use, the Director must be notified of the removal of the bore from use and provided of details of any replacement bore.
- 2 Each monitoring bore must be clearly identifiable with an intact surface seal and stable well casing.

GW4 Groundwater Monitoring

1 Unless otherwise specified in writing by the Director, monitoring and the frequency of monitoring, must be undertaken in accordance with Table 4 below. The nominated groundwater monitoring bores must be monitored for the parameters listed in Column 1 (by field measurement or by representative sampling followed by analysis), at the frequencies listed in Column 3 and the results must be reported in the units in Column 2.

2 Table 4: Groundwater Monitoring Requirements

Column 1 - Parameter	Column 2 - Units	Column 3 - Sampling Frequency
Water Depth	m	six (6) monthly
Zinc (Zn)	mg/L	once every two (2) years
Cadmium (Cd)	mg/L	once every two (2) years
Lead (Pb)	mg/L	once every two (2) years
Mercury (Hg)	mg/L	once every two (2) years
Copper (Cu)	mg/L	once every two (2) years
Manganese (Mn)	mg/L	once every two (2) years
Sulphate (SO ₄)	mg/L	once every two (2) years
pH	pH units	once every two (2) years
conductivity	μS/cm	once every two (2) years

Hazardous Substances

H1 Storage and handling of hazardous materials

- 1 Unless otherwise approved in writing by the Director, environmentally hazardous materials held on The Land must be:
 - **1.1** located within impervious bunded areas, spill trays or other containment systems; and
 - **1.2** managed to prevent unauthorised discharge, emission or deposition of pollutants:
 - **1.2.1** to soils within the boundary of The Land in a manner that is likely to cause serious environmental harm;
 - **1.2.2** to groundwater;
 - **1.2.3** to waterways; or
 - **1.2.4** beyond the boundary of The Land.

H2 Spill kits

Spill kits appropriate for the types and volumes of materials handled on The Land must be kept in appropriate locations to assist with the containment of spilt environmentally hazardous materials.

H3 Inventory of hazardous materials

An inventory must be kept of all environmentally hazardous materials stored and handled on The Land. The inventory must specify the location of storage facilities and the maximum quantities of each environmentally hazardous material likely to be kept in storage and must include material safety data sheets for those environmentally hazardous materials.

H4 Progressive improvement of storage and handling of hazardous materials

- 1 Unless otherwise specified in writing by the Director, a review of the *Review of the Storage and Handling of Environmentally Hazardous Materials* (RSHEHM) must be undertaken with the aim to progressively improve the storage and handling of environmentally hazardous materials to ensure compliance with these conditions, and a revised RSHEHM must be submitted to the Director for approval within one (1) year of the issue of EPN 7043/6 and at three (3) yearly intervals thereafter.
- 2 The RSHEHM must contain:

- 2.1 General description of hazardous materials storage and handling areas which details the location, purpose, condition and photograph;
- 2.2 Risk assessment of the abovementioned areas; and
- **2.3** List of actions, with timeframes to improve and/or maintain the condition of the bunding.
- 3 Once approved the person responsible must act in accordance with the approved RSHEHM.
- 4 The person responsible may apply to the Director to vary or substitute the RSHEHM. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

Monitoring

M1 Samples and measurements for monitoring purposes

- 1 Any sample or measurement required under these conditions must be taken and processed in accordance with the following:
 - **1.1** sampling and measuring must be undertaken by a person with training, experience, and knowledge of the appropriate procedure;
 - 1.2 the integrity of samples must be maintained prior to delivery to a testing facility;
 - 1.3 sample analysis must be conducted by a testing facility accredited by the National Association of Testing Authorities (NATA), or a testing facility approved in writing by the Director, for the specified test;
 - **1.4** details of methods employed in taking samples and measurements and results of sample analysis, and measurements must be retained for at least three (3) years after the date of collection; and
 - 1.5 sampling and measurement equipment must be maintained and operated in accordance with manufacturer's specifications and records of maintenance must be retained for at least three (3) years.

M2 Nominated Discharge Point monitoring

1 Unless otherwise specified in writing by the Director, monitoring and the frequency of monitoring, must be undertaken in accordance with table 5 below. The Nominated Discharge Point must be monitored for the parameters listed in Column 1 (by field measurement or by representative sampling followed by analysis), at the frequencies listed in Column 3 and must be reported in the units in Column 2.

2 Table 5: Nominated Discharge Point Monitoring Requirements

Column 1 - Parameter	Column 2 - Units	Column 3 - Sampling Frequency
Volume of flow (L/h)	L/h	Daily 24 hour composite
Zinc (Zn)	mg/L	Daily 24 hour composite
Cadmium (Cd)	mg/L	Daily 24 hour composite
Lead (Pb)	mg/L	Daily 24 hour composite
Mercury (Hg)	mg/L	Daily 24 hour composite
Arsenic (As)	mg/L	Six (6) Monthly
Copper (Cu)	mg/L	Six (6) Monthly
Iron (Fe)	mg/L	Six (6) Monthly
Manganese (Mn)	mg/L	Six (6) Monthly
Nitrogen (N) as ammonia	mg/L	Six (6) Monthly
Fluoride (F ⁻)	mg/L	Six (6) Monthly
Total Suspended Solids (TSS)	mg/L	Six (6) Monthly

M3 Exceedance of emission limits

- 1 In the event that any of the emission limits specified in these conditions are exceeded:
 - **1.1** The Director must be notified within 24 hours of the person responsible becoming aware of the exceedance;
 - **1.2** A report must be forwarded to the Director within 30 days of becoming aware of the exceedance. The report must include, but not necessarily be limited to, the following:
 - **1.2.1** the reported concentration;
 - **1.2.2** an explanation as whether the exceedance is likely to have caused or threatens environmental harm and or nuisance;
 - **1.2.3** an explanation as to why the emission limit was exceeded;
 - **1.2.4** prompt actions that were undertaken to control the exceedance;
 - **1.2.5** the results of re-sampling of the monitoring point/s at which the exceedance was recorded;
 - **1.2.6** proposed actions to limit the likelihood of a recurrence of the exceedance; and
 - **1.2.7** any other information that would assist the Director to understand the exceedance.
 - 1.3 Unless otherwise approved in writing by the Director, the proposed actions to limit the likelihood of a recurrence must be implemented once approved by the Director. These actions may be amended from time to time with the written approval of the Director.

M4 Derwent Estuary Mixing Zone Monitoring

- 1 Unless otherwise approved in writing by the Director, the Derwent Estuary mixing zone must be monitored monthly for pH at a minimum of 4 sampling locations on the boundary of the mixing zone that are likely to be impacted by the mixing plume; and
- 2 The tidal flow and conditions at the time of sampling must be recorded.

M5 Estuarine water, sediment and biota monitoring

- 1 Estuarine water, sediment and biota monitoring must be undertaken in accordance with the *Nyrstar Hobart Procedure: Estuarine Water, Sediment and Biota Sampling* (EWS&B Sampling).
- 2 The person responsible may apply to the Director to vary or substitute the EWS&B Sampling. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

Noise Control

N1 Noise emission limits

- 1 Noise emissions from the activity when measured at any noise sensitive premises in other ownership not located in the East Risdon Community area and expressed as the equivalent continuous A-weighted sound pressure level must not exceed 52 dB(A).
- 2 Noise emissions from the activity when measured at any noise sensitive premises in other ownership located in the East Risdon Community area and expressed as the equivalent continuous A-weighted sound pressure level must not exceed 56 dB(A).
- 3 Noise emissions from the activity when measured at any neighbouring industrial or commercial activity in other ownership and expressed as the equivalent continuous A-weighted sound pressure level must not exceed 65 dB(A).
- Where the combined level of noise from the activity and the normal ambient noise exceeds the noise levels stated above, this condition will not be considered to be breached unless the noise emissions from the activity are audible and exceed the background noise level by at least 5 dB(A).
- 5 The time interval over which noise levels are averaged must be 10 minutes or an alternative time interval specified in writing by the Director.
- 6 Noise emissions from the site should not contain any dominant or intrusive noise characteristics when measured or observed at any noise sensitive premises as assessed in accordance with the *Noise Measurement Procedures Manual*. Where noise emissions from the site contain any dominant or intrusive noise characteristics at any noise sensitive premises, measured noise levels must be adjusted for tonality, impulsiveness, modulation and low frequency in accordance with the *Noise Measurement Procedures Manual*.
- 7 All methods of measurement must be in accordance with the *Noise Measurement Procedures Manual*.

N2 Community monitoring of noise emissions

- 1 Unless otherwise approved in writing by the Director, the person responsible must maintain three continuous community noise monitors at the nominated community noise monitoring locations.
 - 1.1 The community noise monitors may be temporarily removed from operations for maintenance and/or calibration purposes. The Director must be advised of the need to temporarily remove the community noise monitors for a time period that is greater than eight (8) hours.
- 2 The continuous community noise monitors must be able to create an uninterrupted (to the extent reasonable and practicable) record of the results of community noise.
- Noise emissions from the activity measured by the continuous community noise monitors, when expressed as a monthly median A-weighted L_{90} sound pressure level must not exceed:
 - **3.1** 52 dB(A) at the Birch Road location;

- 3.2 52 dB(A) at the Delwood Drive location; and
- **3.3** 56 dB(A) at the Saundersons Road location.

N3 Noise survey requirements

- 1 Unless otherwise approved by the Director, a noise survey must be carried out:
 - **1.1** within three (3) years since the previous noise survey;
 - 1.2 within six (6) months from the date of any change to the activity which is likely to substantially alter the character or increase the volume of the noise emitted from The Land; and
 - 1.3 at such other times as may reasonably be required by the Director.

N4 Noise survey method and reporting requirements

- 1 Noise surveys must be undertaken in accordance with a survey method approved in writing by the Director, as may be amended from time to time with written approval of the Director.
- 2 Without limitation, the survey method must address the following:
 - **2.1** measurements must be carried out at day, evening and night times (where applicable) at each location; and
 - **2.2** measurement locations, and the number thereof, must be specified, with one location established as a control location (noise).
- 3 Measurements and data recorded during the survey must include:
 - **3.1** operational status of noise producing equipment and throughput of the activity;
 - **3.2** subjective descriptions of the sound at each location;
 - 3.3 details of meteorological conditions relevant to the propagation of noise;
 - 3.4 the equivalent continuous (L_{eq}) and L_{1} , L_{10} , L_{50} , L_{90} and L_{99} A-weighted sound pressure levels measured over a period of 10 minutes or an alternative time interval approved by the Director;
 - 3.5 one-third octave spectra over suitably representative periods of not less than 1 minute; and
 - **3.6** narrow-band spectra over suitably representative periods of not less than 1 minute.
- 4 A noise survey report must be forwarded to the Director within 30 days from the date on which the noise survey is completed.
- 5 The noise survey report must include the following:
 - **5.1** the results and interpretation of the measurements required by these conditions;
 - a map of the area surrounding the activity with the boundary of The Land, measurement locations, and noise sensitive premises clearly marked on the map;
 - 5.3 any other information that will assist with interpreting the results and whether the activity is in compliance with these conditions and EMPCA; and
 - **5.4** recommendations of appropriate mitigation measures to manage any noise problems identified by the noise survey.

N5 Maintain a noise model

- 1 Unless otherwise approved by the Director in writing, the noise model for the activity must be maintained.
- 2 The model must be updated upon replacement, repair or addition of equipment that is a significant source of noise and where replacement, repair or addition of equipment may increase or adversely alter the level or character of the noise emitted from the activity.

3 It is not necessary to re-measure noise sources unless their noise output has changed since a previous measurement accepted by the Director. New or modified noise sources must be measured within 6 months of commissioning or re-commissioning the sources.

Stormwater Management

SW1 Stormwater management

- 1 Unless otherwise approved in writing by the Director, the activity must operate in accordance with the approved *Stormwater Strategy Report*.
- 2 The person responsible may apply to the Director to vary or substitute the *Stormwater Strategy Report*. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

SW2 Storm event discharges

- 1 Contaminated or potentially contaminated stormwater must only be discharged from The Land without treatment at the Effluent Treatment Plant where the stormwater arises from a critical duration storm event with 0.2 Annual Exceedance Probability and where the capacity of the stormwater infrastructure is exceeded.
- 2 In the event of the above:
 - **2.1** the Director must be notified within 24 hours of the event;
 - 2.2 as far as reasonably practicable stormwater must only be discharged from the Land from the nominated stormwater discharge points;
 - 2.3 the flow rate in litres per hour (L/h) must be measured or a reasonable estimate of the flow must be calculated; and
 - a representative grab sample, or in the likely event of variable mass loading a composite sample or multiple grab samples, of the stormwater discharged from The Land must be analysed for the following:

2.4.1 Table SW2: Storm Event Monitoring Parameters

Parameter	Unit of Measure
Total Suspended Solids (TSS)	mg/L
Total Petroleum Hydrocarbons (TPH)	mg/L
Total Zinc (Zn)	mg/L
Total Cadmium (Cd)	mg/L
Total Copper (Cu)	mg/L
Total Lead (Pb)	mg/L

- Within 30 days of the storm event the Director must be provided with a report on the storm event containing, at least, the following information:
 - 3.1 A summary of the storm event, including a comparison of the intensity and duration of the event against the Annual Exceedance Probability;
 - **3.2** Details of the actions undertaken to control the overflow;
 - **3.3** Details of the investigations into contributing causes to the overflow;
 - **3.4** Recommended actions to prevent a recurrence of the overflow; and
 - **3.5** Any other information that would assist the Director to understand the event.

Waste Management

WM1 Non-process Waste Management Plan

- Unless specified in these conditions, or approved in writing by the Director, the activity must operate in accordance with the approved *Non-process Waste Management Plan*.
- 2 The person responsible may apply to the Director to vary or substitute the *Non-process Waste Management Plan*. Any variation or substitution of the plan approved by the Director, by notice in writing, replaces the earlier approval with affect from the date specified in the notice.

WM2 Temporary Stockpiling of Jarosite

- 1 All leachate from the temporary secure jarosite landfill cell located on The Land must be collected and treated as wastewater for the purposes of these conditions.
- 2 Unless otherwise approved in writing by the Director, monitoring of the temporary secure jarosite landfill cell located on The Land must be undertaken in accordance with *Procedure For: Environmental Monitoring in the Loogana-Inshallah Area*, as may be amended from time to time with written approval of the Director.
- 3 Details of investigations into the options for treatment, reuse and/or disposal of the jarosite in the temporary secure jarosite landfill cell must be provided in each Annual Environmental Review required under these conditions.
- 4 If required by the Director in writing, the jarosite in the temporary secure jarosite landfill cell must be removed and reused or disposed in a manner approved by the Director.

WM3 Reprocessing of waste materials

- 1 Unless otherwise specified in writing by the Director, only the waste materials produced on The Land listed below can be reprocessed via the Roasters:
 - **1.1** Solids collected from screens throughout the leach process;
 - 1.2 Contaminated soils; and
 - **1.3** Storage and process tanks sludges, flake linings and garnet mixtures.
- 2 Unless otherwise specified in writing by the Director, only solid material produced by the effluent treatment plant located on The Land and spent acid plant catalyst can be mixed with Lead Sulphate Leach Concentrate or Paragoethite for removal from The Land.

WM4 Treatment of mercury filter cake for disposal

The person responsible may treat mercury filter cake and other mercury contaminated waste materials for the purpose of making the waste materials suitable for disposal at a facility approved to receive such material. The treatment must take place in a bunded area.

Wastewater Management

WW1 Management of wastewater

- 1 Unless otherwise specified in these conditions all wastewater and contaminated or potentially contaminated stormwater must be directed to the Effluent Treatment Plant, located on The Land, for treatment prior to discharge via the nominated discharge point.
- 2 Notwithstanding the above, the following exceptions are permitted:
 - **2.1** Tail Gas Scrubber Water directed to the Foreshore (Tail Gas Scrubber) Outfall; and

2.2 Back-flushing water from the saltwater strainers which is discharged via the Strainer Backwash Outfall.

WW2 Discharge of sewage

Sewage generated on The Land must not be combined with wastewater or stormwater from the activity, and must be directed to an approved external sewage system.

WW3 Discharge limits

1 The maximum concentration of each parameter specified in Column 1 of Table WW3 below, in water discharged from The Land to the Derwent Estuary, must not exceed the limit specified in Column 2.

2 Table WW3: Discharge Limits

Column 1 - Parameter	Column 2 - Maximum Concentration
Total Suspended Solids (TSS)	60 mg/L
Ammonia as Nitrogen	1.50 mg/L
Total Fluoride (F ⁻)	10.00 mg/L
Total Arsenic (As)	0.25 mg/L
Total Cadmium (Cd)	0.03 mg/L
Total Copper (Cu)	1.00 mg/L
Total Iron (Fe)	5.00 mg/L
Total Lead (Pb)	0.20 mg/L
Total Manganese (Mn)	5.00 mg/L
Total Mercury (Hg)	0.01 mg/L
Total Zinc (Zn)	5.00 mg/L

- 3 These limits do no not apply to stormwater discharged under a critical duration storm event with 0.2 Annual Exceedance Probability and where the capacity of the stormwater infrastructure is exceeded, provided that stormwater generated during such an event is managed in accordance with the requirements of these conditions.
- 4 The pH at the boundary of the Derwent Estuary Mixing Zone, must not be less than pH 7.
 - **4.1** The above is not considered breached if investigations demonstrate that the pH is a result of conditions in the surrounding estuary, and not a result of discharge from the nominated discharge point.

Schedule 3: Information

Legal Obligations

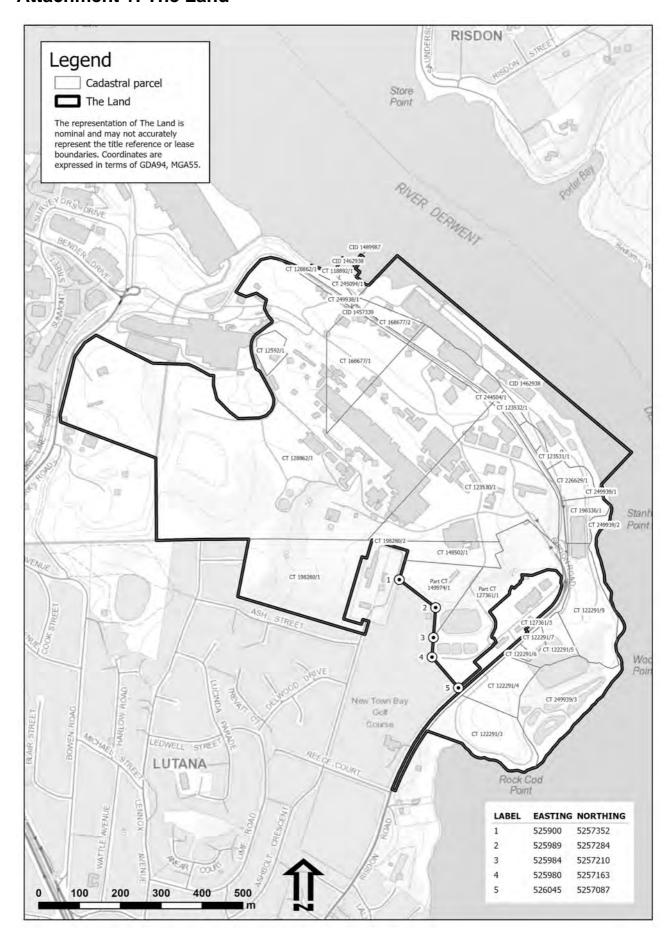
LO1 EMPCA

The activity must be conducted in accordance with both the conditions in this document and the obligations of the *Environmental Management and Pollution Control Act 1994* (EMPCA) and subordinate regulations. The conditions of this document do not replicate legislated obligations; therefore, you should ensure you are aware of your obligations under EMPCA and subordinate regulations.

Other Information

OI1 Notification of incidents under section 32 of EMPCA

Where a person is required by section 32 of EMPCA to notify the Director of the release of a pollutant, the Director can be notified by telephoning 1800 005 171 (a 24-hour emergency telephone number).


OI2 Release of Relevant Information

Under the provisions of Section 23AA of EMPCA relevant information relating to monitoring of environmental impacts required under these conditions may be subject to publishing or public release by the Director.

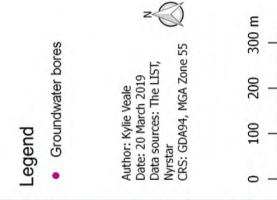
OI3 Waste management hierarchy

- 1 Wastes should be managed in accordance with the following hierarchy of waste management:
 - **1.1** waste should be minimised, that is, the generation of waste must be reduced to the maximum extent that is reasonable and practicable, having regard to best practice environmental management;
 - **1.2** waste should be re-used or recycled to the maximum extent that is practicable; and
 - 1.3 waste that cannot be re-used or recycled must be disposed of at a waste depot site or treatment facility that has been approved in writing by the relevant planning authority or the Director to receive such waste, or otherwise in a manner approved in writing by the Director.

Attachment 1: The Land

Attachment 2: Nominated Exhaust Points (Source Nyrstar Hobart Pty Ltd)

Attachment 3: Nominated Ambient TSPM Locations



Attachment 4: Nominated Community GLC SO2 Monitoring Locations

Attachment 5: Groundwater Monitoring Bores (Source: Nyrstar Hobart Pty Ltd)

Att.5: 2

50 m

Nyrstar CRS: GDA94, MGA Zone 55

25

Nyrstar Hobart

Groundwater Bore Network Northern Section

Legend

Groundwater bores

Author: Kylie Veale Date: 20 March 2019 Data sources: The LIST,

Att.5: 3

Nyrstar Hobart

Groundwater Bore Network

North West Section

Legend

Groundwater bores

Author: Kylie Veale Date: 20 March 2019 Data sources: The LIST, Nyrstar CRS: GDA94, MGA Zone 55

50 m 25

MB92 MB76

Att.5: 4

100 m

Groundwater Bore Network

Eastern Section

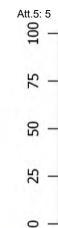
Legend

Groundwater bores

Author: Kylie Veale Date: 20 March 2019 Data sources: The LIST, Nyrstar CRS: GDA94, MGA Zone 55

75 20 25

Nyrstar Hobart MB123 MB103, MB102 MB120 MB124 MB104


Nyrstar Hobart

Groundwater Bore Network Western Section

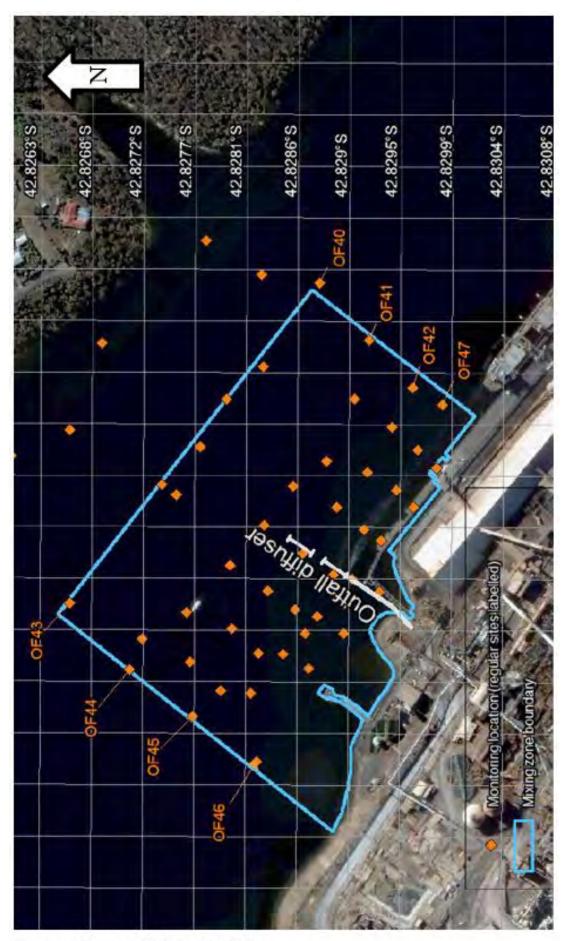
Legend

Groundwater bores

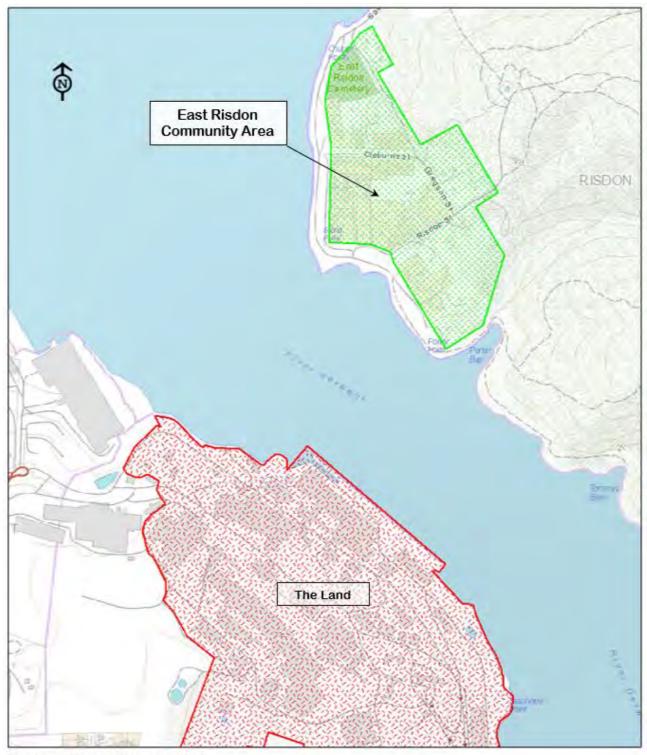
Author: Kylie Veale Date: 20 March 2019 Data sources: The LIST, Nyrstar CRS: GDA94, MGA Zone 55

Nyrstar Hobart

Groundwater Bore Network Southern Section

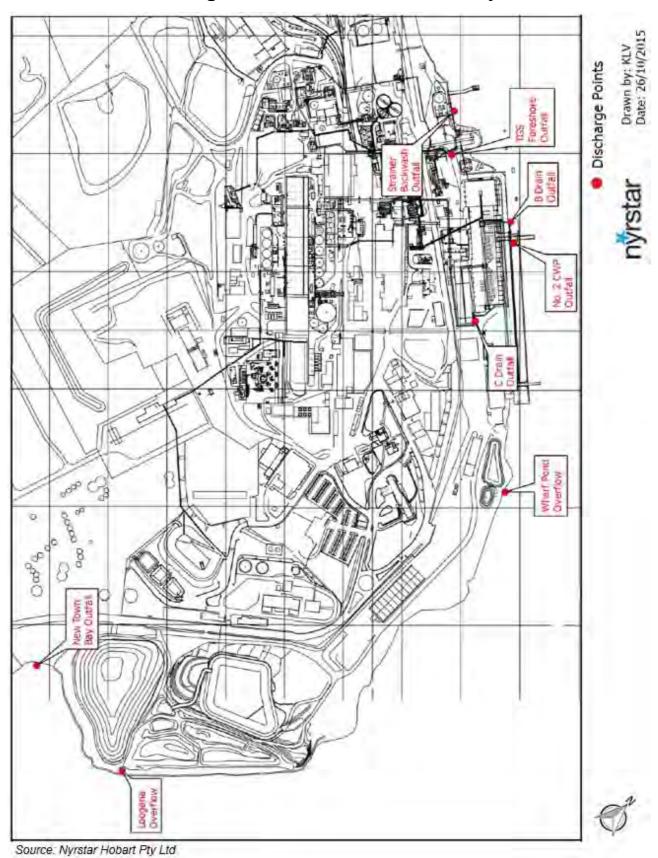

Legend

Groundwater bores


Author: Kylie Veale Date: 20 March 2019 Data sources: The LIST, Nyrstar CRS: GDA94, MGA Zone 55

MB112

Attachment 6: Derwent Estuary Mixing Zone


Attachment 7: East Risdon Community Area

Attachment 8: Nominated Community Noise Monitoring Locations

Attachment 9: Discharge Points to the Derwent Estuary

6.4 Appendix 4 – 2022 - 2024 Stack Emission Reports

Ektimo

Nyrstar Hobart, Lutana
Emission Testing Report
Round 1 - June 2022
Report Number R011346a

Prepared for: Nyrstar Hobart

Document Information

Template Version 300522

Client Name: Nyrstar Hobart

Report Number: R011346a

Date of Issue: 3 August 2022

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Amendment Record

Original Document Number	Initiator	Original Report Date	Section (s)	Reason for revision
R011346	Client (KVe)	8 July 2022	2.9 Zinc Oxide Debagging Station	Incorrect results pasted on page 55.

Report Authorisation

Glenn Trenear Senior Air Monitoring Consultant NATA Accredited Laboratory No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart.

The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Page: 2 of 94

Prepared for: Nyrstar Hobart

Table of Contents

1	Е	xecutive Summary	4
		,	
	1.1	Background	
	1.2	Project Objective	4
	1.3	Licence Comparison	5
2	R	esults	6
	2.1	Foreshore A	6
	2.2	Foreshore B	12
	2.3	Parageothite Dryer	18
	2.4	Cadmium Smelter Plant Scrubber Stack	24
	2.5	Copper Sulphate Crystalliser Plant Vent Stack	30
	2.6	Casting Ventilation 1 – V1	36
	2.7	Casting Ventilation 2 – V2	42
	2.8	Roaster Baghouse	48
	2.9	Zinc Oxide Debagging Station	54
	2.10	Anode Casting	60
	2.11	Zinc Plant 1 Baghouse – ZP1	66
	2.12	Zinc Plant 3 Baghouse – ZP3	72
	2.13	MZR Furnace Baghouse	78
	2.14	MZR Dross Stack	84
3	Т	est Methods	90
4	C	Quality Assurance/Quality Control Information	91
5	D	refinitions	91
6	Д	ppendix 1: Site Photos	92
7	Д	ppendix 2: Weather Observations	93

Prepared for: Nyrstar Hobart

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective

The objective of the project was to conduct a monitoring programme to quantify emissions from **14** discharge points to determine compliance with Nyrstar Hobart 's Environmental Licence and meet NPI reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*	
Foreshore A	19 May 2022	Total particulate matter Fine particulate matter ($PM_{10} \& PM_{2.5}$ via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs) Metals	
Foreshore B	18 May 2022	Sulfur dioxide, sulfur trioxide Total fluoride Nitrogen oxides, nitrous oxide, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)	
Parageothite Dryer	16 May 2022	Total particulate matter	
Cadmium Smelter Plant Scrubber Stack	12 May 2022	Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs)	
Copper Sulphate Crystalliser Plant Vent Stack	10 May 2022	Metals Total fluoride	
Casting Ventilation 1 – V1		Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, sulfur dioxide	
Casting Ventilation 2 – V2	9 May 2022	Total & speciated volatile organic compounds (VOCs)	
Roaster Baghouse	17 May 2022	Total particulate matter Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs) Metals Sulfur dioxide, sulfur trioxide Total fluoride Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)	
Zinc Oxide Debagging Station	13 May 2022	Total particulate matter	
Anode Casting	12 May 2022	Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis)	
Zinc Plant 1 Baghouse – ZP1	44.842022	Polycyclic aromatic hydrocarbons (PAHs) Metals	
Zinc Plant 3 Baghouse – ZP3	11 May 2022	Total fluoride	
MZR Furnace Baghouse	10 May 2022	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, sulfur dioxide	
MZR Dross Stack	17 May 2022	Total & speciated volatile organic compounds (VOCs)	

^{*} Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP. Plant operating conditions have been noted in the report.

Page: 4 of 94

Prepared for: Nyrstar Hobart

 PM_{10} and $PM_{2.5}$ results determined as sample fractions from particle size analysis (PSA), are calculated based on the assumption that the density of the sample material is 1 g/cm³, i.e., no corrections have been made for sample density.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m³	100	0.26
Foreshore A (Tail Gas Scrubber) Stack	Oxides of nitrogen (as NO ₂)	g/m³	2	0.033
	Particulates	mg/m ³	100	<1
	Sulphur dioxide	g/m ³	7.2	0.0092
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.33
	Oxides of nitrogen (as NO ₂)	g/m³	2	0.049
Foreshore B (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	1.4
	Sulphur dioxide	g/m ³	7.2	0.015
Anode Casting Plant Exhaust	Sulphul dioxide	8/111	7.2	11
V1 Furnace Stack				<4
V2 Furnace Stack				<3
Zinc Dust Plant Baghouse 1 Stack				2.4
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	27
Cadmium Smelter Plant Scrubber Stack		6/		<3
Copper Sulphate Crystalliser Plant				<3
Roaster Baghouse				52
Paragoethite Dryer Baghouse				4.7
Anode Casting Plant Exhaust				≤0.33
V1 Furnace Stack				≤0.061
V2 Furnace Stack		mg/m³	5	≤0.048
Zinc Dust Plant Baghouse 1 Stack				≤0.081
Zinc Dust Plant Baghouse 3 Stack	Metals - Pb, As, Sb, Cd, Hg ⁽¹⁾			≤0.36
Cadmium Smelter Plant Scrubber Stack				≤0.12
Copper Sulphate Crystalliser Plant				≤1.2
Roaster Baghouse				4.8
Paragoethite Dryer Baghouse				≤0.12
Anode Casting Plant Exhaust				<0.0008
V1 Furnace Stack				<0.0009
V2 Furnace Stack				<0.0005
Zinc Dust Plant Baghouse 1 Stack				<0.0007
Zinc Dust Plant Baghouse 3 Stack	Metals - Hg	mg/m ³	1	<0.0006
Cadmium Smelter Plant Scrubber Stack				<0.0006
Copper Sulphate Crystalliser Plant				0.012
Roaster Baghouse				0.0021
Paragoethite Dryer Baghouse				<0.001
Anode Casting Plant Exhaust				0.013
V1 Furnace Stack				0.003
V2 Furnace Stack		··· - / ··· ³	4	0.0013
Zinc Dust Plant Baghouse 1 Stack	AAd			0.017
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd	mg/m ³	1	0.011 0.016
Cadmium Smelter Plant Scrubber Stack Copper Sulphate Crystalliser Plant	1			0.016
Roaster Baghouse	1			0.32
Paragoethite Dryer Baghouse	1			0.0043

(1) Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

Page: 5 of 94

Prepared for: Nyrstar Hobart

2 Results

2.1 Foreshore A

Date18/05/2022ClientNyrstar HobartReportR011346Stack IDForeshore ALicence No.7043-5LocationHobart

Ektimo Staff G Trenear & T Bakas **State** TAS

Process Conditions

Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the acid

. 220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Centrifugal fan 3 D Upstream disturbance No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

Mass flow rate (wet basis), kg/hour

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0820 & 1029		
Temperature, °C	16		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1800		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		

130000

Gas Analyser Results	Average
Samplingtime	0900 - 0959
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	33 55
Carbon monoxide	<6 <10
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	11.4
Samplingtime	0900 - 0959
	Concentration Mass Rate
Nitrous oxide	mg/m³ g/min
Nitrous oxide	<0.004 <0.006

Page: 6 of 94

Prepared for: Nyrstar Hobart

220429

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the acid

stream.

Isokinetic Results	Results	
Samplingtime	0840-1022	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	<1 <2	
PM10 (PSA)	<0.6 <1	
PM2.5 (PSA)	<0.2 <0.3	
Sulfur di oxide	9.2 16	
Sulfur trioxide	0.26 0.43	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	100	
Gravimetric analysis date (total particulate)	30-05-2022	

Total Speciated VOCs	Results	
	Concentration mg/m³	Mass Rate g/min
Total	<0.3	<0.4

VOC's C5-C20	Results
Sampling	time 1130-1150
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.4

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 11-Dichloroethene, trans-12-Dichloroethene, cis-12-Dichloroethene, Chloroform, 1,1-Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, Toluene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Tridecane. Tetradecane. Residuals as Toluene

Page: 7 of 94

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Bend 1D Downstream disturbance Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1415 & 1614		
Temperature, °C	18		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	140000		

Isokinetic Results	Results	
Samplingtime	1420-1602	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.01 <0.02	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	99	

Page: 8 of 94

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the acid

Process Conditions stream. 220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

1.84 m²

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Upstream disturbance

Centrifugal fan 3 D

No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters Moisture content, %v/v 1.6 28.5 (wet) Gas molecular weight, g/g mole 28.6 (dry) Gas density at STP, kg/m³ 1.27 (wet) 1.28 (dry) Gas density at discharge conditions, kg/m³ 1.18 **Gas Flow Parameters** 1230 & 1415 Flow measurement time(s) (hhmm) Temperature, °C 17 Velocity at sampling plane, m/s 17 Volumetric flow rate, actual, m³/min 1900 1800 Volumetric flow rate (wet STP), m³/min

1700

140000

Isokinetic Results	Results		
Samplingtime	1230-1412		
	Concentration mg/m³	Mass Rate g/min	
Antimony	<0.003	<0.006	
Arsenic	0.0045	0.0079	
Beryllium	<0.0004	<0.0007	
Cadmium	0.031	0.054	
Chromium	0.0016	0.0028	
Cobalt	<0.0008	<0.001	
Copper	0.029	0.051	
Lead	0.46	0.8	
Manganese	0.026	0.046	
Mercury	0.00084	0.0015	
Nickel	0.002	0.0035	
Phosphorus	<0.01	<0.02	
Selenium	<0.003	<0.005	
Zinc	4.3	7.5	
Total of Sb, As, Cd, Pb, Hg	≤0.5	≤0.87	
Isokinetic Sampling Parameters			
Sampling time, min	10)	
Isokinetic rate, %	94		

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1029 & 1230		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Page: 10 of 94

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Polycyclic Aromatic Hy	drocarbons	Resu	llts	
(PAHs)	Sampling time	1040 -	1222	
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		1600	2700000	
2-Methylnaphthalene		<700	<1000000	
Acenaphthylene		<10	<20000	
Acenaphthene		<10	<20000	
Fluorene		<10	<20000	
Phenanthrene		150	250000	
Anthracene		20	34000	
Fluoranthene		110	180000	
Pyrene		57	97000	
Benz(a)anthracene		<10	<20000	
Chrysene		<10	<20000	
Benzo(b)fluoranthene		<10	<20000	
Benzo(k)fluoranthene		<10	<20000	
Benzo(e)pyrene		<30	<50000	
Benzo(a)pyrene		<10	<20000	
Perylene		<10	<20000	
Indeno(1,2,3-cd)pyrene		<20	<30000	
Dibenz(ah)anthracene		<20	<30000	
Benzo(ghi)perylene		<30	<40000	
Total 16 PAHs		1900	3300000	
Total 19 PAHs		1900	3300000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		12	20000	
Upper Bound		24	40000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound

Defines values reported below detection are equal to half the detection limit.

Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	97

Page: 11 of 94

Prepared for: Nyrstar Hobart

2.2 Foreshore B

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² 4" Flange (x2), 150 mm Sampling port size, number & depth Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.7 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1031 & 1228		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Gas Analyser Results	Average	
Sampling	time 1013 - 1112	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	49 82	
Carbon monoxide	<6 <10	
	Concentration %v/v	
Carbon dioxide	0.6	
Oxygen	11.5	
Sampling	time 1013 - 1112	
	Concentration Mass Rate	
Nitrous oxide	mg/m³ g/min	
Nitrous oxide	<0.004 <0.006	

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State

Process Conditions Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Isokinetic Results		Results		
Sampli	ng time	1040-1222		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		1.4	2.4	
PM10	(PSA)	0.67	1.1	
PM2.5	(PSA)	0.18	0.31	
Sulfur dioxide		15	25	
Sulfur trioxide		0.33	0.56	
Isokinetic Sampling Parameters				
Sampling time, min		10	0	
Isokinetic rate, %		105		
Gravimetric analysis date (total partic	ulate)	30-05-	2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.4	

VOC's C5-C20		Results	
Samp	lingtime	1100-1	1120
		Concentration mg/m³	Mass Rate g/min
Detection limit ⁽¹⁾		<0.3	<0.4

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 11-Dichloroethene, trans-12-Dichloroethene, cis-12-Dichloroethene, Chloroform, 1,11-Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1Methoxy-2-propanol, Trichloroethylene, Toluene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpenzene, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 13 of 94

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore B Licence No. 7043-5 Location Hobart Ektimo Staff State TAS G Trenear & T Bakas

Process Conditions Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1228 & 1416		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Isokinetic Results	Results
Sampling time	1230-1412
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	<0.02 <0.03
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	103

Page: 14 of 94

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart R011346 Report Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State

Process Conditions Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the acid

stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Stairs 4 m Access & height of ports Vertical Circular Duct orientation & shape Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0825 & 1031		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1800		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Isokinetic Results	Results	
Sampling time	0840-1022	
	Concentration Mass Rate	
	mg/m³ g/min	
Antimony	<0.003 <0.005	
Arsenic	<0.002 <0.004	
Beryllium	<0.0004 <0.0006	
Cadmium	0.003 0.005	
Chromium	<0.0005 <0.0008	
Cobalt	<0.0005 <0.0008	
Copper	0.0065 0.011	
Lead	0.05 0.084	
Manganese	0.018 0.03	
Mercury	0.00091 0.0015	
Nickel	0.0012 0.002	
Phosphorus	0.013 0.022	
Selenium	<0.003 <0.005	
Zinc	0.46 0.78	
Total of Sb, As, Cd, Pb, Hg	≤0.059 ≤0.099	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	99	

Prepared for: Nyrstar Hobart

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

220429

Sampling Plane Details

Sampling plane dimensions 1530 mm 1.84 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 150 mm Access & height of ports Stairs 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D 2 20 No. traverses & points sampled

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1416 & 1609		
Temperature, °C	18		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m ³ /min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	140000		

Page: 16 of 94

Prepared for: Nyrstar Hobart

220429

Date 18/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas

Process Conditions
Unit 5 producing 63000 m3/hr & Unit 6 producing 1020000 m3/hr of gas through the

acid stream.

Polycyclic Aromatic Hydrocarbons Results (PAHs) 1420 - 1602 Sampling time Concentration Mass Rate ng/m³ ng/min Naphthalene 1800 3200000 2-Methylnaphthalene <600 <1000000 Acenaphthylene <10 <20000 Acenaphthene <10 <20000 Fluorene <20000 <10 Phenanthrene 210 360000 Anthracene 370 640000 Fluoranthene 92 160000 Pyre ne 43 74000 Benz(a)anthracene <10 <20000 Chrysene <10 <20000 Benzo(b)fluoranthene <10 <20000 Benzo(k)fluoranthene <20000 <10 Benzo(e)pyrene <30 <50000 Benzo(a)pyrene <10 <20000 Perylene <20000 <10 Indeno(1,2,3-cd)pyrene <20 <30000 Dibenz(ah)anthracene <20 <30000 Benzo(ghi)perylene <40000 <20 Total 16 PAHs 4400000 2500 Total 19 PAHs 2500 4400000 BaP-TEQ Lower Bound 0 0 Middle Bound 20000 11

Abbreviations and definitions

Upper Bound

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

23

39000

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	98

Page: 17 of 94

Prepared for: Nyrstar Hobart

2.3 Parageothite Dryer

Date16/05/2022ClientNyrstar HobartReportR011346Stack IDParageothite Dryer

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTASProcess Conditions6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum.

Sampling Plane Details

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/hour

Sampling plane dimensions 950 mm 0.709 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 50 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters Moisture content, %v/v 32 Gas molecular weight, g/g mole 25.7 (wet) 29.3 (dry) Gas density at STP, kg/m³ 1.15 (wet) 1.31 (dry) Gas density at discharge conditions, kg/m³ 0.82 **Gas Flow Parameters** Flow measurement time(s) (hhmm) 1152 & 1309 Temperature, °C 108 Velocity at sampling plane, m/s 9.7 410 Volumetric flow rate, actual, m³/min Volumetric flow rate (wet STP), m³/min 290

200

20000

Gas Analyser Results	Average	
Sampling time	1203 - 1302	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	55 11	
Sulfur dioxide	<6 <1	
Carbon monoxide	<6 <1	
	Concentration %v/v	
Carbon dioxide	3.4	
Oxygen	14.9	

Page: 18 of 94

Prepared for: Nyrstar Hobart

Date 16/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Parageothite Dryer Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** 6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum. 220429

Isokinetic Results	Results	
Samplingtime	1200-1303	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	4.7 0.95	
PM10 (PSA)	2.3 0.46	
PM2.5 (PSA)	0.59 0.12	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Is okinetic rate, %	107	
Gravimetric analysis date (total particulate)	30-05-2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	0.22 0.044	

VOC's C5-C20	Results	
Samplingtime	1210-1300	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.1 <0.02	
Toluene	0.22 0.044	
Acetone	<0.1 <0.02	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 11-Dichloroethene, trans-12-Dichloroethene, cis-12-Dichloroethene, Chloroform, 1,11-Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, 12,3-Trimethylbenzene, Pentane, Acrylotoritrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 19 of 94

Prepared for: Nyrstar Hobart

220429

Date16/05/2022ClientNyrstar HobartReportR011346Stack IDParageothite Dryer

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State TAS
Process Conditions 6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum.

Sampling Plane Details

Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	25		
Gas molecular weight, g/g mole	26.4 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.18 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.83		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309 & 1436		
Temperature, °C	109		
Velocity at sampling plane, m/s	9.5		
Volumetric flow rate, actual, m³/min	410		
Volumetric flow rate (wet STP), m³/min	290		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/hour	20000		

Isokinetic Results	Results	
Sampling time	1325-1428	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.07 <0.02	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	106	

Prepared for: Nyrstar Hobart

220429

Date16/05/2022ClientNyrstar HobartReportR011346Stack IDParageothite Dryer

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State TAS
Process Conditions 6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum.

Sampling Plane Details

Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021)

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	24		
Gas molecular weight, g/g mole	26.6 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.18 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.84		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1152 & 1309		
Temperature, °C	108		
Velocity at sampling plane, m/s	9.6		
Volumetric flow rate, actual, m³/min	410		
Volumetric flow rate (wet STP), m³/min	290		
Volumetric flow rate (dry STP), m³/min	220		
Mass flow rate (wet basis), kg/hour	20000		

Ideal sampling plane

Isokinetic Results	Results	
Sampling time	1200-1303 Concentration Mass Rate	
	mg/m³ g/min	
Antimony	<0.006 <0.001	
Arsenic	0.0038 0.00084	
Beryllium	<0.0008 <0.0002	
Cadmium	0.0043 0.00094	
Chromium	0.003 0.00066	
Cobalt	<0.001 <0.0002	
Copper	0.013 0.0027	
Lead	0.11 0.023	
Manganese	0.051 0.011	
Mercury	<0.001 <0.0002	
Nickel	0.0088 0.0019	
Phosphorus	<0.03 <0.007	
Selenium	<0.008 <0.002	
Zinc	0.48 0.11	
Total of Sb, As, Cd, Pb, Hg	≤0.12 ≤0.027	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	98	

Prepared for: Nyrstar Hobart

Date16/05/2022ClientNyrstar HobartReportR011346Stack IDParageothite Dryer

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions 6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum.

220429

Sampling Plane Details

Sampling plane dimensions 950 mm Sampling plane area 0.709 m^2 Sampling port size, number & depth 4" Flange (x2), 50 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	27		
Gas molecular weight, g/g mole	26.2 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.83		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309 & 1436		
Temperature, °C	109		
Velocity at sampling plane, m/s	9.7		
Volumetric flow rate, actual, m³/min	410		
Volumetric flow rate (wet STP), m³/min	290		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/hour	21000		

Prepared for: Nyrstar Hobart

220429

Date16/05/2022ClientNyrstar HobartReportR011346Stack IDParageothite Dryer

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State
Process Conditions 6.5 m3/hr of dirt and 2.5 m3/hr of bypass flow into the drum.

Polycyclic Aromatic	Hydrocarbons	Resu	Its	
(PAHs)	Samplingtime	1325 - 1428		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		<3000	<600000	
2-Methylnaphthaler	ne	<1000	<300000	
Acenaphthylene		<20	<4000	
Acenaphthene		<20	<4000	
Fluorene		<20	<4000	
Phenanthrene		640	140000	
Anthracene		150	31000	
Fluoranthene		440	94000	
Pyrene		190	40000	
Benz(a)anthracene		34	7200	
Chrysene		100	22000	
Benzo(b)fluoranthe	ne	43	9200	
Benzo(k)fluoranthe	ne	<20	<4000	
Benzo(e)pyrene		<50	<10000	
Benzo(a)pyrene		<20	<4000	
Perylene		<20	<4000	
Indeno(1,2,3-cd)pyre	ene	<40	<8000	
Dibenz(ah)anthrace	ne	<30	<7000	
Benzo(ghi)perylene		<50	<10000	
Total 16 PAHs		1600	340000	
Total 19 PAHs		1600	340000	
BaP-TEQ				
Lower Bound		8.7	1900	
Middle Bound		28	6100	
Upper Bound		48	10000	

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	104

Page: 23 of 94

Prepared for: Nyrstar Hobart

220429

2.4 Cadmium Smelter Plant Scrubber Stack

Date12/05/2022ClientNyrstar HobartReportR011346Stack IDCadmium Smelter

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume extraction while furnace in operation.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Sampling port size, number & depth

4" BSP (x2), 85 mm

Vertical Circular

Bend 1 D

Upstream disturbance

Change in diameter 2 D

No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1210 & 1327		
Temperature, °C	22		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	11000		

Gas Analyser Results	Average	
Sampling time	1238 - 1337	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.6	
Sulfur dioxide	<6 <0.9	
Carbon monoxide	<6 <0.9	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.8	

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Cadmium Smelter Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Fume extraction while furnace in operation. 220429

Isokinetic Results	Results	
Sampling ti	me 1220-1322	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	<3 <0.5	
PM10 (P	(A) <3 <0.4	
PM2.5 (P	(A) <2 <0.3	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Is okinetic rate, %	99	
Gravimetric analysis date (total particula	30-05-2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.04	

VOC's C5-C20	Results
Samplingtime	1400-1420
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.04

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-12-Dichloro ethene, cis-12-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 12-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, Toluene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Buto xyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, 2,3-Dimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 25 of 94

Prepared for: Nyrstar Hobart

Date12/05/2022ClientNyrstar HobartReportR011346Stack IDCadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Sampling port size, number & depth

4" BSP (x2), 85 mm

Scissor lift 4 m

Vertical Circular

Bend 1 D

Upstream disturbance

Change in diameter 2 D

No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1327 & 1448		
Temperature, °C	22		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	11000		

Isokinetic Results	Results	
Sampling time	1340-1442	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.004	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	100	

Page: 26 of 94

Prepared for: Nyrstar Hobart

Date12/05/2022ClientNyrstar HobartReportR011346Stack IDCadmium Smelter

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume extraction while furnace in operation.

220420

Sampling Plane Details

Sampling plane dimensions 470 mm Sampling plane area 0.173 m² Sampling port size, number & depth 4" BSP (x2), 85 mm Access & height of ports Scissor lift 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Change in diameter 2 D No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1210 & 1327		
Temperature, °C	22		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	11000		

Isokinetic Results		Results		
	Sampling time	1220-1322		
		Concentration	Mass Rate	
		mg/m³	g/min	
Antimony		<0.005	<0.0008	
Arsenic		<0.002	<0.0003	
Beryllium		<0.0007	<0.0001	
Cadmium		0.016	0.0024	
Chromium		0.002	0.0003	
Cobalt		<0.0009	<0.0001	
Copper		0.0066	0.00096	
Lead		0.091	0.013	
Manganese		0.056	0.0082	
Mercury		<0.0006	<0.00009	
Nickel		0.0045	0.00066	
Phosphorus		<0.02	< 0.003	
Selenium		<0.005	<0.0008	
Zinc		0.5	0.074	
Total of Sb, As, Cd, Pb, Hg		≤0.12	≤0.017	
Isokinetic Sampling Parameters				
Sampling time, min		60		
Isokinetic rate, %		100		

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Cadmium Smelter

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Fume extraction while furnace in operation.

220429

Sampling Plane Details

Sampling plane dimensions 470 mm Sampling plane area 0.173 m² Sampling port size, number & depth 4" BSP (x2), 85 mm Access & height of ports Scissor lift 4 m Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Change in diameter 2 D No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters		
Moisture content, %v/v	2	
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)
Gas density at discharge conditions, kg/m³	1.20	
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	1327 & 1448	
Temperature, °C	22	
Velocity at sampling plane, m/s	15	
Volumetric flow rate, actual, m³/min	160	
Volumetric flow rate (wet STP), m³/min	150	
Volumetric flow rate (dry STP), m³/min	150	

11000

Page: 28 of 94

Prepared for: Nyrstar Hobart

220429

Date12/05/2022ClientNyrstar HobartReportR011346Stack IDCadmium Smelter

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume extraction while furnace in operation.

Polycyclic Aromatic	Hydrocarbons	Resu	ılts
(PAHs)	Sampling time	1340 - 1442	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		3200	470000
2-Methylnaphthale	ne	<1000	<200000
Acenaphthylene		<20	<3000
Acenaphthene		<20	<3000
Fluorene		<20	<3000
Phenanthrene		500	74000
Anthracene		25000	3700000
Fluoranthene		270	40000
Pyrene		120	18000
Benz(a)anthracene		21	3100
Chrysene		60	8700
Benzo(b)fluoranthe	ene	<20	<3000
Benzo(k)fluoranthe	ne	<20	<3000
Benzo(e)pyrene		<50	<7000
Benzo(a)pyrene		<20	<3000
Perylene		<20	<3000
Indeno(1,2,3-cd)pyr	ene	<40	<5000
Dibenz(ah)anthrace	ene	<30	<4000
Benzo(ghi)perylene		<50	<7000
Total 16 PAHs		29000	4300000
Total 19 PAHs		29000	4300000
BaP-TEQ			
Lower Bound		2.7	400
Middle Bound		23	3300
Upper Bound		43	6200

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	60	
Is okinetic rate, %	99	

Page: 29 of 94

Prepared for: Nyrstar Hobart

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date10/05/2022ClientNyrstar HobartReportR011346Stack IDCopper Sul phate Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions

Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into

Drver - 45%

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.196 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Somm

O.196 m²

A" Flange (x2), 100 mm

Truck mounted boom 35 m

Vertical Circular

Exit 2 D

Upstream disturbance

Bend 4 D

Upstream disturbanceBend 4 DNo. traverses & points sampled2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	9.8		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.08		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1056 & 1236		
Temperature, °C	48		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/hour	11000		

Gas Analyser Results	Average	
Sampling time	1002 - 1101	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.6	
Sulfur dioxide	<6 <0.8	
Carbon monoxide	<6 <0.8	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.8	

Page: 30 of 94

Prepared for: Nyrstar Hobart

220429

Date10/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Copper Sulphate Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into

Dryer - 45%

Isokinetic Results		Results	
	Sampling time	1130-1232	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<3	<0.4
PM10	(PSA)	<1	<0.2
PM2.5	(PSA)	<0.3	<0.04
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		97	
Gravimetric analysis date (total	particulate)	30-05-2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.5 <0.07	

VOC's C5-C20	Results	
Sampling tin	ne 1140-1200	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.5 <0.07	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-12-Dichloro ethene, cis-1,2-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 12-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, Toluene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Residuals as Toluene

Page: 31 of 94

Prepared for: Nyrstar Hobart

Date10/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Copper Sulphate Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into

Dryer - 45% 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Access & height of ports Truck mounted boom 35 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Bend 4 D No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	8.2		
Gas molecular weight, g/g mole	28.1 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.08		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0930 & 1056		
Temperature, °C	47		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	190		
Volumetric flow rate (wet STP), m³/min	160		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	12000		

Isokinetic Results	Results	
Sampling time	0950-1052	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.04 <0.006	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	94	

Page: 32 of 94

Prepared for: Nyrstar Hobart

220429

Date10/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Copper Sulphate Stack

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions

Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into

Dryer - 45%

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m²

Sampling port size, number & depth 4" Flange (x2), 100 mm

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Truck mounted boom 35 m

Vertical Circular

Exit 2 D

Bend 4 D

2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	5.2		
Gas molecular weight, g/g mole	28.4 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.10		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0930 & 1056		
Temperature, °C	47		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	190		
Volumetric flow rate (wet STP), m³/min	160		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	12000		

Isokinetic Results	Results	
Sampling time	0950-1052	
	Concentration Mass Rate	
	mg/m³ g/min	
Antimony	0.0071 0.0011	
Arsenic	<0.004 <0.0006	
Beryllium	<0.0008 <0.0001	
Cadmium	0.85 0.13	
Chromium	0.016 0.0024	
Cobalt	0.053 0.0081	
Copper	0.86 0.13	
Lead	0.33 0.05	
Manganese	0.075 0.011	
Mercury	0.012 0.0019	
Nickel	0.048 0.0073	
Phosphorus	<0.02 <0.004	
Selenium	<0.01 <0.002	
Zinc	2.4 0.37	
Total of Sb, As, Cd, Pb, Hg	≤1.2 ≤0.18	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	95	

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart

Report R011346 Stack ID Copper Sulphate Stack

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions

Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into

Dryer - 45%

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

A" Flange (x2), 100 mm

Access & height of ports

Truck mounted boom 35 m

Duct orientation & shape

Vertical Circular

Downstream disturbance

Exit 2 D

Upstream disturbance Bend 4 D
No. traverses & points sampled 2 12

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v 9.8

Gas molecular weight, g/g mole 27.9 (wet) 29.0 (dry)

Gas density at STP, kg/m³ 1.24 (wet) 1.29 (dry)

Gas density at discharge conditions, kg/m³ 1.07

Gas Flow Parameters

Flow measurement time(s) (hhmm)

Temperature, °C

Velocity at sampling plane, m/s

Volumetric flow rate, actual, m³/min

Volumetric flow rate (wet STP), m³/min

160

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/hour

1056 & 1236

48

160

Volumetric flow rate, actual, m³/min

140

Mass flow rate (wet basis), kg/hour

12000

Page: 34 of 94

Prepared for: Nyrstar Hobart

220429

Date 10/05/2022 Client Nyrstar Hobart

Report R011346 Stack ID Copper Sulphate Stack

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Production rate - 6 tonnes/day, Dryer Outlet Temperature - 50.9 deg C, Feed rate into **Process Conditions**

Dryer - 45%

Polycyclic Aromatic	: Hydrocarbons	Resu	ılts
(PAHs)	Sampling time	1130 -	1232
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		7600	1100000
2-Methylnaphthale	ene	<1000	<200000
Acenaphthylene		<500	<70000
Acenaphthene		5900	860000
Fluorene		1500	210000
Phenanthrene		1200	180000
Anthracene		260	37000
Fluoranthene		300	43000
Pyrene		140	20000
Benz(a)anthracene		<60	<9000
Chrysene		140	20000
Benzo(b)fluoranthe	ene	<20	<4000
Benzo(k)fluoranthe	ene	<20	<4000
Benzo(e)pyrene		<20	<4000
Benzo(a)pyrene		<20	<4000
Perylene		<20	<4000
Indeno(1,2,3-cd)pyi	rene	<100	<20000
Dibenz(ah)anthrac	ene	<100	<20000
Benzo(ghi)perylene	e	<60	<9000
Total 16 PAHs		17000	2500000
Total 19 PAHs		17000	2500000
BaP-TEQ			
Lower Bound		1.4	200
Middle Bound		52	7500
Upper Bound		100	15000

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit. Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	92

Page: 35 of 94

Prepared for: Nyrstar Hobart

2.6 Casting Ventilation 1 – V1

Date 9/05/2022 Client Nyrstar Hobart

Report R011346 Stack ID Casting Ventilation 1 - V1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 635 mm
Sampling plane area 0.317 m²
Sampling port size, number & depth 4" Flange (x1), 245 mm

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled 1 6
Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1250 & 1415		
Temperature, °C	24		
Velocity at sampling plane, m/s	25		
Volumetric flow rate, actual, m³/min	470		
Volumetric flow rate (wet STP), m³/min	430		
Volumetric flow rate (dry STP), m³/min	420		
Mass flow rate (wet basis), kg/hour	33000		

Gas Analyser Results	Average	
Sampling time	1320 - 1419	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <2	
Sulfur dioxide	<6 <3	
Carbon monoxide	<6 <3	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Page: 36 of 94

Prepared for: Nyrstar Hobart

Date 9/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Casting Ventilation 1 - V1 Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State **Process Conditions** Casting area in normal operation 220429

Isokinetic Results		Results	
Sampl	ingtime	1300-1400	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<4	<2
PM10	(PSA)	<2	<0.8
PM2.5	(PSA)	<0.6	<0.2
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		100	
Gravimetric analysis date (total parti	culate)	30-05-2022	

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.5 <0.2		

VOC's C5-C20	Results 1330-1350
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.1

$\textbf{(1)} \, \textbf{Unless otherwise reported, the following target compounds were found to be below detection:} \\$

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-1,2-Dichloro ethene, cis-1,2-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 1,2-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, Toluene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 37 of 94

Prepared for: Nyrstar Hobart

Date 9/05/2022 Client Nyrstar Hobart

Report R011346 Stack ID Casting Ventilation 1 - V1

Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Access & height of ports Stairs 2 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D

No. traverses & points sampled 16

Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1642 & 1755		
Temperature, °C	23		
Velocity at sampling plane, m/s	23		
Volumetric flow rate, actual, m³/min	430		
Volumetric flow rate (wet STP), m³/min	400		
Volumetric flow rate (dry STP), m³/min	400		
Mass flow rate (wet basis), kg/hour	31000		

Isokinetic Results	Results
Samplingtime	1645-1745
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	<0.03 <0.01
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	109

Page: 38 of 94

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 1 - V1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Access & height of ports Stairs 2 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.4		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1538 & 1648		
Temperature, °C	24		
Velocity at sampling plane, m/s	23		
Volumetric flow rate, actual, m³/min	440		
Volumetric flow rate (wet STP), m³/min	410		
Volumetric flow rate (dry STP), m³/min	400		
Mass flow rate (wet basis), kg/hour	31000		

Isokinetic Results	Results		
Sampling	me 1540-1640		
	Concentration Mass Rate		
	mg/m³ g/min		
Antimony	<0.009 <0.004		
Arsenic	<0.005 <0.002		
Beryllium	<0.001 <0.0005		
Cadmium	0.003 0.0012		
Chromium	0.019 0.0078		
Cobalt	<0.002 <0.0008		
Copper	0.012 0.0046		
Lead	0.043 0.017		
Manganese	0.1 0.041		
Mercury	<0.0009 <0.0004		
Nickel	0.039 0.016		
Phosphorus	<0.03 <0.01		
Selenium	<0.01 <0.004		
Zinc	2.1 0.83		
Total of Sb, As, Cd, Pb, Hg	≤0.061 ≤0.025		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	91		

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 1 - V1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.317 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Lest 2 D

Lest ream disturbance

Sampling plane dimensions

4" Flange (x1), 245 mm

Vertical Circular

Exit 2 D

Upstream disturbance Centrifugal fan 2 D
No. traverses & points sampled 1 6
Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement

The number of points sampled is less than the requirement

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.4		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1415 & 1538		
Temperature, °C	24		
Velocity at sampling plane, m/s	24		
Volumetric flow rate, actual, m ³ /min	450		
Volumetric flow rate (wet STP), m ³ /min	420		
Volumetric flow rate (dry STP), m³/min	410		
Mass flow rate (wet basis), kg/hour	32000		

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 1 - V1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

220429

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Sampling time	1430 -	1530	
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		12000	4900000	
2-Methylnaphthale	ene	<2000	<800000	
Acenaphthylene		<600	<300000	
Acenaphthene		1200	490000	
Fluorene		420	170000	
Phenanthrene		1100	450000	
Anthracene		160	65000	
Fluoranthene		650	270000	
Pyrene		370	150000	
Benz(a)anthracene		120	50000	
Chrysene		260	110000	
Benzo(b)fluoranthe	ene	96	40000	
Benzo(k)fluoranthe	ene	80	33000	
Benzo(e)pyrene		<30	<10000	
Benzo(a)pyrene		<30	<10000	
Perylene		<30	<10000	
Indeno(1,2,3-cd)py	rene	300	130000	
Dibenz(ah)anthrac	ene	<200	<70000	
Benzo(ghi)perylend	2	<80	<30000	
Total 16 PAHs		17000	6800000	
Total 19 PAHs		17000	6800000	
BaP-TEQ				
Lower Bound		63	26000	
Middle Bound		110	47000	
Upper Bound		160	68000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	97

Prepared for: Nyrstar Hobart

2.7 Casting Ventilation 2 – V2

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 595 mm
Sampling plane area 0.278 m²

Sampling port size, number & depth 4" Flange (x1), 245 mm

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled 1 6
Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.12		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1535 & 1646		
Temperature, °C	45		
Velocity at sampling plane, m/s	19		
Volumetric flow rate, actual, m³/min	310		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	260		
Mass flow rate (wet basis), kg/hour	21000		

Gas Analyser Results	Average
Sampling time	1437 - 1548
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <1
Sulfur dioxide	7.6 2
Carbon monoxide	<6 <2
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Prepared for: Nyrstar Hobart

Date 9/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Casting Ventilation 2 - V2 Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Casting area in normal operation 220429

Isokinetic Results		Results	
Sampli	ng time	ne 1540-1640	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<3	<0.8
PM10	(PSA)	<2	<0.4
PM2.5	(PSA)	<0.4	<0.1
Isokinetic Sampling Parameters			
Sampling time, min		60	1
Isokinetic rate, %		94	ı
Gravimetric analysis date (total partic	ulate)	30-05-2	2022

Total Speciated VOCs	Results
	Concentration Mass Rate mg/m³ g/min
Total	0.15 0.041

VOC's C5-C20	Results
Sampling time	1520-1620
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.09 <0.02
Benzene	0.15 0.041

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethene, trans-12-Dichloroethene, cis-12-Dichloroethene, Chloroform, 1,1-Trichloroethane, 12-Dichloroethane, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, 12,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Residuals as Toluene

Page: 43 of 94

Prepared for: Nyrstar Hobart

Date 9/05/2022 Client Nyrstar Hobart

Report R011346 Stack ID Casting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions 595 mm Sampling plane area 0.278 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Access & height of ports Stairs 2 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.12		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1646 & 1755		
Temperature, °C	44		
Velocity at sampling plane, m/s	18		
Volumetric flow rate, actual, m³/min	310		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	260		
Mass flow rate (wet basis), kg/hour	21000		

Isokinetic Results	Results
Samplingtime	1649-1749
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	<0.03 <0.007
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	95

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions 595 mm Sampling plane area 0.278 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Access & height of ports Stairs 2 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D 1 6 No. traverses & points sampled Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1420 & 1535		
Temperature, °C	46		
Velocity at sampling plane, m/s	19		
Volumetric flow rate, actual, m³/min	320		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	270		
Mass flow rate (wet basis), kg/hour	21000		

Isokinetic Results	Results	
Samplingtime	1430-1530	
	Concentration Mass Rate	
	mg/m³ g/min	
Antimony	<0.005 <0.001	
Arsenic	0.017 0.0045	
Beryllium	<0.0006 <0.0002	
Cadmium	0.0013 0.00034	
Chromium	0.018 0.0048	
Cobalt	0.00082 0.00022	
Copper	0.012 0.0033	
Lead	0.025 0.0066	
Manganese	0.06 0.016	
Mercury	<0.0005 <0.0001	
Nickel	0.033 0.0087	
Phosphorus	<0.02 <0.004	
Selenium	0.009 0.0024	
Zinc	1.7 0.45	
Total of Sb, As, Cd, Pb, Hg	≤0.048 ≤0.013	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	96	

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.278 m²

Sampling port size, number & depth

Access & height of ports

Duct orientation & shape

Downstream disturbance

Sampling plane area

0.278 m²

4" Flange (x1), 245 mm

Vertical Circular

Exit 2 D

Upstream disturbance Centrifugal fan 2 D
No. traverses & points sampled 1 6
Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters		
Moisture content, %v/v	2.1	
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)
Gas density at discharge conditions, kg/m³	1.11	
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	1254 & 1420	
Temperature, °C	46	
Velocity at sampling plane, m/s	21	
Volumetric flow rate, actual, m³/min	350	
Volumetric flow rate (wet STP), m³/min	300	
Volumetric flow rate (dry STP), m³/min	300	
Mass flow rate (wet basis), kg/hour	23000	
Velocity difference, %	-7	

Prepared for: Nyrstar Hobart

Date9/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Casting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

220429

Polycyclic Aromatic	Hydrocarbons	Resu	ılts
(PAHs)	Sampling time	1300 - 1400	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		41000	12000000
2-Methylnaphthale	ne	5000	1500000
Acenaphthylene		1100	340000
Acenaphthene		840	250000
Fluorene		1400	420000
Phenanthrene		5500	1600000
Anthracene		1500	450000
Fluoranthene		1200	370000
Pyrene		790	230000
Benz(a)anthracene		<90	<30000
Chrysene		140	41000
Benzo(b)fluoranthe	ene	<30	<10000
Benzo(k)fluoranthe	ene	<30	<10000
Benzo(e)pyrene		<30	<10000
Benzo(a)pyrene		<30	<10000
Perylene		<30	<10000
Indeno(1,2,3-cd)pyr	ene	<200	<50000
Dibenz(ah)anthrac	ene	<200	<60000
Benzo(ghi)perylene	2	<90	<30000
Total 16 PAHs		54000	16000000
Total 19 PAHs		59000	17000000
BaP-TEQ			
Lower Bound		1.4	410
Middle Bound		72	21000
Upper Bound		140	42000

Abbreviations and definitions

Ba P-TEQ Benzo(a) pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	108
Velocity difference, %	-7

Prepared for: Nyrstar Hobart

2.8 Roaster Baghouse

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters

Moisture content, %v/v 2.5
Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry)
Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry)

Gas density at discharge conditions, kg/m³ 1.11

Gas Flow Parameters

Flow measurement time(s) (hhmm)

1440 & 1601

Temperature, °C

Velocity at sampling plane, m/s

Volumetric flow rate, actual, m³/min

Volumetric flow rate (wet STP), m³/min

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/hour

2900

Gas Analyser Results	Average	
Sampling time	1321 - 1420	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.2	
Carbon monoxide	<6 <0.2	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.4	

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Isokinetic Results		Resu	llts	
	Sampling time	1450-1556		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		52	1.9	
PM10	(PSA)	37	1.4	
PM2.5	(PSA)	8	0.29	
Sulfur dioxide		2800	100	
Sulfur trioxide		0.68	0.025	
Isokinetic Sampling Param	eters			
Sampling time, min		64	ļ.	
Isokinetic rate, %		99)	
Gravimetric analysis dat	te (total particulate)	30-05-	2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.01	

VOC's C5-C20	Results
Sampling ti	me 1340-1400
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.01

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-1,2-Dichloro ethene, cis-1,2-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 1,2-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, Toluene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpenzene, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Residuals as Toluene

Page: 49 of 94

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2.3		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1300 & 1440		
Temperature, °C	40		
Velocity at sampling plane, m/s	6.3		
Volumetric flow rate, actual, m³/min	44		
Volumetric flow rate (wet STP), m³/min	38		
Volumetric flow rate (dry STP), m³/min	37		
Mass flow rate (wet basis), kg/hour	2900		

Isokinetic Results	Results	
Sampling time	1320-1426	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.001	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	99	

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8

Comments

The discharge is assumed to be composed of dry air and moisture

Sample plane conformance to AS4323.1 (2021)

Stack Parameters			
Moisture content, %v/v	2.3		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1300 & 1440		
Temperature, °C	40		
Velocity at sampling plane, m/s	6.3		
Volumetric flow rate, actual, m³/min	44		
Volumetric flow rate (wet STP), m³/min	38		
Volumetric flow rate (dry STP), m³/min	37		
Mass flow rate (wet basis), kg/hour	2900		

Ideal sampling plane

Isokinetic Results	Results	
Sampling	me 1320-1426 Concentration Mass Rate mg/m³ g/min	
Antimony	0.0072 0.00027	
Arsenic	0.022 0.00082	
Beryllium	<0.0007 <0.00002	
Cadmium	0.32 0.012	
Chromium	0.0038 0.00014	
Cobalt	0.0039 0.00015	
Copper	0.29 0.011	
Lead	4.5 0.17	
Manganese	0.16 0.006	
Mercury	0.0021 0.000077	
Nickel	0.0061 0.00023	
Phosphorus	<0.03 <0.001	
Selenium	<0.005 <0.0002	
Zinc	30 1.1	
Total of Sb, AS, Cd, Pb, Hg	4.8 0.18	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	99	

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Access & height of ports Stairs 15 m Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

Stack Parameters Moisture content, %v/v 2.5 Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.10 **Gas Flow Parameters** 1440 & 1601 Flow measurement time(s) (hhmm) Temperature, °C 40 6.3 Velocity at sampling plane, m/s Volumetric flow rate, actual, m³/min 44 38 Volumetric flow rate (wet STP), m³/min 37 Volumetric flow rate (dry STP), m³/min

2900

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Polycyclic Aromatic H	lydrocarbons	Resu	lts	
(PAHs)	Sampling time 1450 - 1556		1556	
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		8900	330000	
2-Methylnaphthalen	e	<1000	<40000	
Acenaphthylene		410	15000	
Acenaphthene		460	17000	
Fluorene		120	4300	
Phenanthrene		250	9400	
Anthracene		51	1900	
Fluoranthene		220	8300	
Pyrene		160	5800	
Benz(a)anthracene		<50	<2000	
Chrysene		<40	<1000	
Benzo(b)fluoranthen	e	<20	<700	
Benzo(k)fluoranthen	e	<20	<700	
Benzo(e)pyrene		<20	<700	
Benzo(a)pyrene		<20	<700	
Perylene		<20	<700	
Indeno(1,2,3-cd)pyre	ne	<90	<3000	
Dibenz(ah)anthracer	ne	<100	<4000	
Benzo(ghi)perylene		<50	<2000	
Total 16 PAHs		11000	390000	
Total 19 PAHs		11000	390000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		40	1500	
Upper Bound		80	3000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	64	
Isokinetic rate, %	99	

Page: 53 of 94

Prepared for: Nyrstar Hobart

2.9 Zinc Oxide Debagging Station

Date13/05/2022ClientNyrstar Hobart

ReportR011346Stack IDZink Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test.

220429

Sampling Plane Details

Mass flow rate (wet basis), kg/hour

Sampling plane dimensions 250 mm
Sampling plane area 0.0491 m²
Sampling port size, number 3" Flange (x4)

Access & height of ports Fixed ladder

Duct orientation & shapeVertical CircularDownstream disturbanceCowl >2 DUpstream disturbanceBend >6 DNo. traverses & points sampled2 4

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0910		
Temperature, °C	24		
Velocity at sampling plane, m/s	4.9		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	13		

Gas Analyser Results	Average	
Sampling time	0908 - 0935	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.06	
Sulfur dioxide	<6 <0.08	
Carbon monoxide	<6 <0.08	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

1000

Prepared for: Nyrstar Hobart

Date 13/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Zink Oxide Fume Debagging Station Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Fume unloading for duration of test. 220429

Isokinetic Results		Results	
	Samplingtime	0908-0936	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<5	<0.07
PM10	(PSA)	<3	<0.04
PM2.5	(PSA)	<0.8	<0.01
Isokinetic Sampling Parameters			
Sampling time, min		28	3
Isokinetic rate, %		110	
Gravimetric analysis date (tot	netric analysis date (total particulate) 30-05-2022		2022

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	0.22 0.0029	

VOC's C5-C20	Results	
Sampling time	1130-1210	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.1 <0.002	
Toluene	0.22 0.0029	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethene, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Chloroform, 1,1-Trichloroethane, 1,2-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, Acetone, Pentane, Acrylontirile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 55 of 94

Prepared for: Nyrstar Hobart

Date13/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Zinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0491 m²

Sampling port size, number

Access & height of ports

250 mm

0.0491 m²

3" Flange (x4)

Duct orientation & shapeVertical CircularDownstream disturbanceCowl >2 DUpstream disturbanceBend >6 DNo. traverses & points sampled2 4

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1031		
Temperature, °C	18		
Velocity at sampling plane, m/s	5.9		
Volumetric flow rate, actual, m³/min	17		
Volumetric flow rate (wet STP), m³/min	16		
Volumetric flow rate (dry STP), m³/min	16		
Mass flow rate (wet basis), kg/hour	1300		

Isokinetic Results	Results	
Samplingtime	1030-1058	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.05 <0.0008	
Isokinetic Sampling Parameters		
Sampling time, min	28	
Isokinetic rate, %	98	

Page: 56 of 94

Prepared for: Nyrstar Hobart

Date13/05/2022ClientNyrstar Hobart

Report R011346 **Stack ID** Zinc Oxide Fume Debagging Station

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume unloading for duration of test.

220429

Sampling Plane Details

Sampling plane dimensions 250 mm
Sampling plane area 0.0491 m²
Sampling port size, number 3" Flange (x4)
Access & height of ports Fixed ladder

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Vertical Circular

Cowl >2 D

Bend >6 D

2 4

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1031		
Temperature, °C	18		
Velocity at sampling plane, m/s	5.9		
Volumetric flow rate, actual, m³/min	17		
Volumetric flow rate (wet STP), m³/min	16		
Volumetric flow rate (dry STP), m³/min	16		
Mass flow rate (wet basis), kg/hour	1300		

Isokinetic Results	Results	
Sampling time	1030-1058	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.01 <0.0002	
Arsenic	<0.005 <0.0008	
Beryllium	<0.001 <0.00002	
Cadmium	0.0082 0.00013	
Chromium	<0.002 <0.00003	
Cobalt	<0.002 <0.00003	
Copper	0.006 0.000097	
Lead	0.063 0.001	
Manganese	0.048 0.00077	
Mercury	<0.001 <0.00002	
Nickel	<0.003 <0.00005	
Phosphorus	<0.03 <0.0005	
Selenium	<0.01 <0.0002	
Zinc	0.52 0.0085	
Total of Sb, As, Cd, Pb, Hg	≤0.088 ≤0.0014	
Isokinetic Sampling Parameters		
Sampling time, min	28	
Isokinetic rate, %	103	

Prepared for: Nyrstar Hobart

Date13/05/2022ClientNyrstar Hobart

Report R011346 **Stack ID** Zinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test.

220429

Sampling Plane Details

Sampling plane dimensions 250 mm
Sampling plane area 0.0491 m²
Sampling port size, number 3" Flange (x4)
Access & height of ports Fixed ladder

Duct orientation & shape Vertical Circular
Downstream disturbance Cowl >2 D
Upstream disturbance Bend >6 D
No. traverses & points sampled 2 4

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0910		
Temperature, °C	24		
Velocity at sampling plane, m/s	4.9		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	13		
Mass flow rate (wet basis), kg/hour	1000		

Prepared for: Nyrstar Hobart

220429

Date13/05/2022ClientNyrstar Hobart

Report R011346 **Stack ID** Zinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test.

Polycyclic Aromatic F	lydrocarbons	Resu	ılts
(PAHs)	Samplingtime	0908 - 0936	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		<5000	<70000
2-Methylnaphthalen	e	<2000	<30000
Acenaphthylene		<40	<500
Acenaphthene		<40	<500
Fluorene		260	3400
Phenanthrene		1300	17000
Anthracene		440	5800
Fluoranthene		990	13000
Pyrene		380	5000
Benz(a)anthracene		42	550
Chrysene		110	1400
Benzo(b)fluoranthen	e	<40	<500
Benzo(k)fluoranthen	e	<40	<500
Benzo(e)pyrene		<100	<1000
Benzo(a)pyrene		<40	<500
Perylene		<40	<500
Indeno(1,2,3-cd)pyre	ne	<70	<900
Dibenz(ah)anthracer	ne	<60	<800
Benzo(ghi)perylene		<90	<1000
Total 16 PAHs		3500	46000
Total 19 PAHs		3500	46000
BaP-TEQ			
Lower Bound		5.3	70
Middle Bound		45	590
Upper Bound		85	1100

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	28
Isokinetic rate, %	90

Page: 59 of 94

Prepared for: Nyrstar Hobart

2.10 Anode Casting

Nyrstar Hobart Date 12/05/2022 Client Report R011346 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 220429

Sampling Plane Details

Sampling plane dimensions 450 mm 0.159 m² Sampling plane area 4" Flange (x1) Sampling port size, number Access & height of ports Stairs & fixed ladder 3 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Centrifugal fan 2 D Upstream disturbance No. traverses & points sampled 1 6 Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0751 & 0905		
Temperature, °C	18		
Velocity at sampling plane, m/s	5.8		
Volumetric flow rate, actual, m³/min	55		
Volumetric flow rate (wet STP), m ³ /min	52		
Volumetric flow rate (dry STP), m³/min	52		
Mass flow rate (wet basis), kg/hour	4000		

Gas Analyser Results	Average		
Sampling time	0807 - 0906		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.2		
Sulfur dioxide	<6 <0.3		
Carbon monoxide	<6 <0.3		
	Concentration %v/v		
Carbon dioxide	<0.4		
Oxygen	20.9		

Page: 60 of 94

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State **Process Conditions** Casting area in normal operation 220429

Isokinetic Results		Results		
	Sampling time	0800-0900		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		11	0.55	
PM10	(PSA)	5.4	0.28	
PM2.5	(PSA)	1.5	0.08	
Isokinetic Sampling Parameters				
Sampling time, min		60		
Isokinetic rate, %		100		
Gravimetric analysis date (tota	l particulate)	30-05-2022		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.2 <0.009	

VOC's C5-C20	Results	
Samplingtime	0845-0	0915
	Concentration mg/m³	Mass Rate g/min
Detection limit ⁽¹⁾	<0.2	<0.009

$\textbf{(1)} \, \textbf{Unless otherwise reported, the following target compounds were found to be below detection:} \\$

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-1,2-Dichloro ethene, cis-1,2-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 1,2-Dichloro ethane, 1,1-Dichloro ethane, 1,2-Dichloro ethane, 1,1-Dichloro ethane, 1,1-Dich

Page: 61 of 94

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID **Anode Casting** Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Casting area in normal operation. 220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.159 m²

Sampling port size, number

Access & height of ports

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Stairs & fixed ladder 3 m

Vertical Circular

Exit 2 D

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled 1 6
Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0905 & 1016		
Temperature, °C	19		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m³/min	51		
Volumetric flow rate (dry STP), m³/min	50		
Mass flow rate (wet basis), kg/hour	3900		

Isokinetic Results	Results	
Sampling time	0911-1011	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.001	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	99	

Page: 62 of 94

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Anode Casting Stack ID 7043-5 Licence No. Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 220429

Sampling Plane Details

Sampling plane dimensions 450 mm 0.159 m² Sampling plane area 4" Flange (x1) Sampling port size, number Access & height of ports Stairs & fixed ladder 3 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Centrifugal fan 2D Upstream disturbance No. traverses & points sampled 1 6 Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0751 & 0905		
Temperature, °C	18		
Velocity at sampling plane, m/s	5.8		
Volumetric flow rate, actual, m³/min	55		
Volumetric flow rate (wet STP), m³/min	52		
Volumetric flow rate (dry STP), m³/min	52		
Mass flow rate (wet basis), kg/hour	4000		

Isokinetic Results	Results		
Sampling time	0800-0900		
	Concentration Mass Rate		
	mg/m³ g/min		
Antimony	<0.005 <0.0003		
Arsenic	<0.002 <0.0001		
Beryllium	<0.0007 <0.00004		
Cadmium	0.013 0.00067		
Chromium	0.0026 0.00014		
Cobalt	<0.001 <0.00006		
Copper	0.014 0.0007		
Lead	0.31 0.016		
Manganese	0.18 0.0094		
Mercury	<0.0008 <0.00004		
Nickel	0.0038 0.00019		
Phosphorus	0.034 0.0018		
Selenium	<0.005 <0.0003		
Zinc	9.1 0.47		
Total of Sb, As, Cd, Pb, Hg	≤0.33 ≤0.017		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	100		

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Casting area in normal operation. 220429

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Access & height of ports Stairs & fixed ladder 3 m Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6

Sample plane conformance to AS4323.1 (2021) Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0905 & 1016		
Temperature, °C	19		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m³/min	51		
Volumetric flow rate (dry STP), m³/min	50		
Mass flow rate (wet basis), kg/hour	3900		

Prepared for: Nyrstar Hobart

Date 12/05/2022 Client Nyrstar Hobart Report R011346 Stack ID **Anode Casting** Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 220429

Polycyclic Aromatic	Hydrocarbons	Resu	lts
(PAHs)	Samplingtime	0911 - 1011	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		<3000	<100000
2-Methylnaphthaler	ne	<1000	<60000
Acenaphthylene		<400	<20000
Acenaphthene		100	5100
Fluorene		97	4800
Phenanthrene		890	45000
Anthracene		37	1900
Fluoranthene		520	26000
Pyrene		260	13000
Benz(a)anthracene		61	3100
Chrysene		200	9900
Benzo(b)fluoranthe	ne	59	3000
Benzo(k)fluoranthe	ne	<20	<1000
Benzo(e)pyrene		<20	<1000
Benzo(a)pyrene		<20	<1000
Perylene		<20	<1000
Indeno(1,2,3-cd)pyre	ene	<90	<5000
Dibenz(ah)anthrace	ne	<100	<6000
Benzo(ghi)perylene		<50	<3000
Total 16 PAHs		2200	110000
Total 19 PAHs		2200	110000
BaP-TEQ			
Lower Bound		14	700
Middle Bound		53	2700
Upper Bound		92	4600

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	100

Page: 65 of 94

Prepared for: Nyrstar Hobart

2.11 Zinc Plant 1 Baghouse - ZP1

Date11/05/2022ClientNyrstar Hobart

ReportR011346Stack IDZinc Plant 1 Baghouse - ZP 1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 1 area.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.195 m²

Sampling port size, number

Access & height of ports

Duct orientation & shape

390 x 500 mm

0.195 m²

1" Holes (x3)

Scissor lift 4 m

Vertical Rectangular

Downstream disturbance Bend >2 D
Upstream disturbance Bend >6 D
No. traverses & points sampled 3 6

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Stack Parameters

Moisture content, %v/v 2.9
Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry)
Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry)

Gas density at discharge conditions, kg/m³ 1.03

Gas Flow Parameters

Flow measurement time(s) (hhmm) 0920 & 1045
Temperature, °C 73
Velocity at sampling plane, m/s 6.6
Volumetric flow rate, actual, m³/min 77
Volumetric flow rate (wet STP), m³/min 62
Volumetric flow rate (dry STP), m³/min 60
Mass flow rate (wet basis), kg/hour 4800

Gas Analyser Results	Average		
Sampling time	1000 - 1059		
	Concentration Mass Rate		
Combustion Gases	mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.3		
Sulfur dioxide	<6 <0.4		
Carbon monoxide	<6 <0.4		
	Concentration %v/v		
Carbon dioxide	<0.4		
Oxygen	20.9		

Page: 66 of 94

Prepared for: Nyrstar Hobart

220429

 Date
 11/05/2022
 Client
 Nyrstar Hobart

 Report
 R011346
 Stack ID
 Zinc Plant 1 Baghouse - ZP 1

Licence No. 7043-5 Location Hobart

Ektimo StaffG Trenear & T BakasStateTASProcess ConditionsNormal production in Zinc Plant 1 area.

Isokinetic Results		Results		
Sampling	gtime	0940-1040		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		2.4	0.14	
PM10	(PSA)	1.1	0.067	
PM2.5	(PSA)	0.3	0.018	
Isokinetic Sampling Parameters				
Sampling time, min		60)	
Isokinetic rate, %		99		
Gravimetric analysis date (total particu	late)	30-05-2022		

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.3 <0.02		

VOC's C5-C20	Results	
Samplingtime	1115-1135	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.02	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-12-Dichloro ethene, cis-12-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 12-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylbenzene, 3-Methylbenzene, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Residuals as Toluene

Page: 67 of 94

Prepared for: Nyrstar Hobart

Date 11/05/2022 Client Nyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 1 Baghouse - ZP 1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 1 area.

220429

Sampling Plane Details

Sampling plane dimensions390 x 500 mmSampling plane area0.195 m²Sampling port size, number1" Holes (x3)Access & height of portsScissor lift 4 m

Duct orientation & shape Vertical Rectangular

Downstream disturbanceBend >2 DUpstream disturbanceBend >6 DNo. traverses & points sampled3 6

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	2.7		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.03		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1045 & 1155		
Temperature, °C	74		
Velocity at sampling plane, m/s	6.6		
Volumetric flow rate, actual, m³/min	78		
Volumetric flow rate (wet STP), m³/min	62		
Volumetric flow rate (dry STP), m³/min	61		
Mass flow rate (wet basis), kg/hour	4800		

Isokinetic Results	Results	
Samplingtime	1050-1150	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.002	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate. %	99	

Prepared for: Nyrstar Hobart

Date 11/05/2022 Client Nyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area.

220429

Sampling Plane Details

390 x 500 mm Sampling plane dimensions 0.195 m² Sampling plane area Sampling port size, number 1" Holes (x3) Access & height of ports Scissor lift 4 m Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 3 6

Comments

The discharge is assumed to be composed of dry air and moisture

Sample plane conformance to AS4323.1 (2021)

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.03		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0920 & 1045		
Temperature, °C	73		
Velocity at sampling plane, m/s	6.6		
Volumetric flow rate, actual, m³/min	77		
Volumetric flow rate (wet STP), m³/min	62		
Volumetric flow rate (dry STP), m³/min	61		
Mass flow rate (wet basis), kg/hour	4800		

Ideal sampling plane

Isokinetic Results	Results		
Samplingtime	0940-1040		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.006 <0.0003		
Arsenic	<0.002 <0.0002		
Beryllium	<0.0007 <0.00004		
Cadmium	0.017 0.001		
Chromium	0.0056 0.00034		
Cobalt	0.0015 0.000089		
Copper	0.024 0.0014		
Lead	0.055 0.0033		
Manganese	0.074 0.0045		
Mercury	<0.0007 <0.00004		
Nickel	0.035 0.0021		
Phosphorus	<0.02 <0.001		
Selenium	<0.006 <0.0003		
Zinc	2.4 0.14		
Total of Sb, As, Cd, Pb, Hg	≤0.081 ≤0.0049		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	99		

Prepared for: Nyrstar Hobart

Date11/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area.

220429

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.195 m²

Sampling port size, number

Access & height of ports

390 x 500 mm

0.195 m²

1" Holes (x3)

Scissor lift 4 m

Duct orientation & shape Vertical Rectangular

Downstream disturbance Bend >2 D
Upstream disturbance Bend >6 D
No. traverses & points sampled 3 6

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters

Moisture content, %v/v

Gas molecular weight, g/g mole

Gas density at STP, kg/m³

Gas density at discharge conditions, kg/m³

1.28 (wet)

1.29 (dry)

Gas Flow Parameters

Flow measurement time(s) (hhmm)

1045 & 1155

Temperature, °C

74

Temperature, °C 74

Velocity at sampling plane, m/s 6.6

Volumetric flow rate, actual, m³/min 77

Volumetric flow rate (wet STP), m³/min 62

Volumetric flow rate (dry STP), m³/min 61

Mass flow rate (wet basis), kg/hour 4800

Page: 70 of 94

Prepared for: Nyrstar Hobart

220429

Date11/05/2022ClientNyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 1 Baghouse - ZP 1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 1 area.

Polycyclic Aromatic Hydrocarbons	Results
(PAHs) Sampling time	1050 - 1150
	Concentration Mass Rate ng/m³ ng/min
Naphthalene	7400 450000
2-Methylnaphthalene	<1000 <80000
Acenaphthylene	<400 <20000
Acenaphthene	740 45000
Fluorene	340 21000
Phenanthrene	2200 130000
Anthracene	410 25000
Fluoranthene	1600 95000
Pyrene	750 45000
Benz(a)anthracene	<50 <3000
Chrysene	230 14000
Benzo(b)fluoranthene	<20 <1000
Benzo(k)fluoranthene	<20 <1000
Benzo(e)pyrene	<20 <1000
Benzo(a)pyrene	<20 <1000
Perylene	<20 <1000
Indeno(1,2,3-cd)pyrene	<90 <6000
Dibenz(ah)anthracene	<100 <7000
Benzo(ghi)perylene	<70 <4000
Total 16 PAHs	14000 820000
Total 19 PAHs	14000 820000

Abbreviations and definitions

BaP-TEQ Lower Bound

Middle Bound

Upper Bound

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

2.3

45

87

140

2700

5300

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Is okinetic rate, %	101

Page: 71 of 94

Prepared for: Nyrstar Hobart

2.12 Zinc Plant 3 Baghouse - ZP3

Date11/05/2022ClientNyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 3 area.

220429

Sampling Plane Details

Sampling plane dimensions 285 mm Sampling plane area 0.0638 m² Sampling port size, number 2" Holes (x2) Access & height of ports Stairs 15 m Duct orientation & shape Horizontal Circular Downstream disturbance Bend 1D Bend 4 D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	3.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.02		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309 & 1419		
Temperature, °C	76		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	60		
Volumetric flow rate (wet STP), m³/min	47		
Volumetric flow rate (dry STP), m³/min	46		
Mass flow rate (wet basis), kg/hour	3600		

Gas Analyser Results	Average	
Sampling time	1329 - 1428	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.2	
Sulfur dioxide	<6 <0.3	
Carbon monoxide	<6 <0.3	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Page: 72 of 94

Prepared for: Nyrstar Hobart

Date 11/05/2022 Client Nyrstar Hobart Report R011346 Stack ID Zinc Plant 3 Baghouse - ZP 3 Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** Normal production in Zinc Plant 3 area 220429

Isokinetic Results		Results	
Sar	nplingtime	1313-	1417
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		27	1.2
PM10	(PSA)	16	0.71
PM2.5	(PSA)	4.7	0.22
Isokinetic Sampling Parameters			
Sampling time, min		64	4
Isokinetic rate, %		105	
Gravimetric analysis date (total pa	rticulate)	30-05-2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.01	

VOC's C5-C20	Results
Sampling time	1450-1510
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.01

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethene, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, 1,12-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 12,4-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Amethylbenzene, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 73 of 94

Prepared for: Nyrstar Hobart

Date 11/05/2022 Client Nyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

220429

Sampling Plane Details

Sampling plane dimensions 285 mm Sampling plane area 0.0638 m² Sampling port size, number 2" Holes (x2) Access & height of ports Stairs 15 m Duct orientation & shape Horizontal Circular Downstream disturbance Bend 1D Bend 4 D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	2.3		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.02		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1419 & 1530		
Temperature, °C	75		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	59		
Volumetric flow rate (wet STP), m ³ /min	47		
Volumetric flow rate (dry STP), m³/min	46		
Mass flow rate (wet basis), kg/hour	3600		

Isokinetic Results	Results	
Sampling time	1423-1527	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.04 <0.002	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	100	

Page: 74 of 94

Prepared for: Nyrstar Hobart

Date11/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

220429

Sampling Plane Details

Sampling plane dimensions 285 mm Sampling plane area 0.0638 m² Sampling port size, number 2" Holes (x2) Access & height of ports Stairs 15 m Duct orientation & shape Horizontal Circular Downstream disturbance Bend 1D Upstream disturbance Bend 4D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.02		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309 & 1419		
Temperature, °C	76		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	60		
Volumetric flow rate (wet STP), m³/min	47		
Volumetric flow rate (dry STP), m³/min	46		
Mass flow rate (wet basis), kg/hour	3600		

Isokinetic Results	Results	
Sampling time	1313-14	117
	Concentration mg/m³	Mass Rate g/min
Antimony	<0.006	<0.0003
Arsenic	<0.002	<0.0001
Beryllium	<0.0007	<0.00003
Cadmium	0.011	0.00052
Chromium	<0.0009	<0.00004
Cobalt	<0.001	<0.00005
Copper	0.013	0.0006
Lead	0.34	0.016
Manganese	0.049	0.0023
Mercury	<0.0006	<0.00003
Nickel	0.0016	0.000074
Phosphorus	<0.02	<0.0008
Selenium	<0.006	<0.0003
Zinc	27	1.2
Total of Sb, As, Cd, Pb, Hg	≤0.36	≤0.017
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	98	

Prepared for: Nyrstar Hobart

Date11/05/2022ClientNyrstar Hobart

Report R011346 Stack ID Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

220429

Sampling Plane Details

Sampling plane dimensions 285 mm Sampling plane area 0.0638 m² Sampling port size, number 2" Holes (x2) Access & height of ports Stairs 15 m Duct orientation & shape Horizontal Circular Downstream disturbance Bend 1D Bend 4D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	3.3		
Gas molecular weight, g/g mole	28.6 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1419 & 1530		
Temperature, °C	75		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	59		
Volumetric flow rate (wet STP), m³/min	47		
Volumetric flow rate (dry STP), m³/min	45		
Mass flow rate (wet basis), kg/hour	3600		

Page: 76 of 94

Prepared for: Nyrstar Hobart

220429

Date 11/05/2022 Client Nyrstar Hobart

Report R011346 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 3 area.

Polycyclic Aromatic	Hydrocarbons	Resu	ılts
(PAHs)	Samplingtime	1423 -	1527
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		<3000	<100000
2-Methylnaphthale	ne	<1000	<60000
Acenaphthylene		<400	<20000
Acenaphthene		87	3900
Fluorene		59	2700
Phenanthrene		160	7400
Anthracene		<20	<1000
Fluoranthene		79	3600
Pyre ne		<40	<2000
Benz(a)anthracene		<50	<2000
Chrysene		<40	<2000
Benzo(b)fluoranthe	ene	<20	<1000
Benzo(k)fluoranthe	ene	<20	<1000
Benzo(e)pyrene		<20	<1000
Benzo(a)pyrene		<20	<1000
Perylene		<20	<1000
Indeno(1,2,3-cd)pyr	ene	<100	<4000
Dibenz(ah)anthrac	ene	<100	<5000
Benzo(ghi)perylene		<50	<2000
Total 16 PAHs		390	18000
Total 19 PAHs		390	18000
BaP-TEQ			
Lower Bound		0	0
Middle Bound		45	2000
Upper Bound		90	4100

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	101

Page: 77 of 94

Prepared for: Nyrstar Hobart

2.13 MZR Furnace Baghouse

Date 10/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" BSP (x2), 80 mm Scaffold 5 m Access & height of ports Vertical Circular Duct orientation & shape Downstream disturbance Bend 2D Bend 6D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1540 & 1655		
Temperature, °C	73		
Velocity at sampling plane, m/s	5.2		
Volumetric flow rate, actual, m³/min	61		
Volumetric flow rate (wet STP), m³/min	48		
Volumetric flow rate (dry STP), m³/min	47		
Mass flow rate (wet basis), kg/hour	3700		

Gas Analyser Results	Average	
Samplingtime	1436 - 1535	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.2	
Sulfur dioxide	<6 <0.3	
Carbon monoxide	<6 <0.3	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.6	

Page: 78 of 94

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 220429

Isokinetic Results	Results	
Samplingt	ime 1540-1646	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	4.2 0.19	
PM10 (F	SA) 2.7 0.13	
PM2.5 (F	SA) 0.58 0.027	
Isokinetic Sampling Parameters		
Sampling time, min 80		
Isokinetic rate, %	94	
Gravimetric analysis date (total particula	30-05-2022	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.6 <0.03	

VOC's C5-C20	Results	
Samplingtime	1512-1530	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.6 <0.03	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethene, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloroethylene, Toluene, 1,1,2-Trichloroethane, Tetrachloroethene, Chlorobenzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 79 of 94

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" BSP (x2), 80 mm Access & height of ports Scaffold 5 m Duct orientation & shape Vertical Circular Bend 2D Downstream disturbance Bend 6 D Upstream disturbance No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1420 & 1540		
Temperature, °C	73		
Velocity at sampling plane, m/s	5.2		
Volumetric flow rate, actual, m³/min	61		
Volumetric flow rate (wet STP), m³/min	48		
Volumetric flow rate (dry STP), m³/min	47		
Mass flow rate (wet basis), kg/hour	3700		

Isokinetic Results	Results	
Samplingtime	1430-1536	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.02 <0.001	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	92	

Page: 80 of 94

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" BSP (x2), 80 mm Access & height of ports Scaffold $5 \, \mathrm{m}$ Duct orientation & shape Vertical Circular Downstream disturbance Bend 2D Upstream disturbance Bend 6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1420 & 1540		
Temperature, °C	73		
Velocity at sampling plane, m/s	5		
Volumetric flow rate, actual, m³/min	59		
Volumetric flow rate (wet STP), m³/min	46		
Volumetric flow rate (dry STP), m³/min	45		
Mass flow rate (wet basis), kg/hour	3500		

Isokinetic Results	Results	
Sampling time	1430-1536 Concentration Mass Rate	
	mg/m³ g/min	
Antimony	<0.005 <0.0002	
Arsenic	<0.002 <0.0001	
Beryllium	<0.0006 <0.00003	
Cadmium	0.032 0.0014	
Chromium	0.0028 0.00012	
Cobalt	0.0021 0.000096	
Copper	0.037 0.0017	
Lead	0.034 0.0015	
Manganese	0.061 0.0027	
Mercury	0.00086 0.000039	
Nickel	0.0089 0.0004	
Phosphorus	<0.02 <0.0009	
Selenium	<0.005 <0.0002	
Zinc	4.1 0.18	
Total of Sb, As, Cd, Pb, Hg	≤0.075 ≤0.0034	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Is okinetic rate, %	97	

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart Report Stack ID R011346 MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" BSP (x2), 80 mm Access & height of ports Scaffold 5 m Duct orientation & shape Vertical Circular Bend 2D Downstream disturbance Upstream disturbance Bend 6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Conforming but non-ideal

Comments

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1540 & 1655		
Temperature, °C	73		
Velocity at sampling plane, m/s	5.2		
Volumetric flow rate, actual, m³/min	61		
Volumetric flow rate (wet STP), m³/min	48		
Volumetric flow rate (dry STP), m³/min	47		
Mass flow rate (wet basis), kg/hour	3700		

Prepared for: Nyrstar Hobart

Date 10/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 220429

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1540 - 1646		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		2000	92000	
2-Methylnaphthaler	ne	<900	<40000	
Acenaphthylene		<10	<700	
Acenaphthene		130	6200	
Fluorene		110	5100	
Phenanthrene		880	41000	
Anthracene		66	3100	
Fluoranthene		460	22000	
Pyrene		170	7900	
Benz(a)anthracene		<10	<700	
Chrysene		95	4400	
Benzo(b)fluoranthe	ne	<10	<700	
Benzo(k)fluoranthe	ne	<10	<700	
Benzo(e)pyrene		<40	<2000	
Benzo(a)pyrene		<10	<700	
Perylene		<10	<700	
Indeno(1,2,3-cd)pyre	ene	<30	<1000	
Dibenz(ah)anthrace	ne	<20	<1000	
Benzo(ghi)perylene		<30	<2000	
Total 16 PAHs		3900	180000	
Total 19 PAHs		3900	180000	
BaP-TEQ				
Lower Bound		0.95	44	
Middle Bound		16	750	
Upper Bound		31	1500	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	80	
Isokinetic rate, %	95	

Prepared for: Nyrstar Hobart

2.14 MZR Dross Stack

Date 17/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Dross Stack Licence No. 7043-5 Hobart Location **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Access & height of ports Stairs 6 m Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0850		
Temperature, °C	22		
Velocity at sampling plane, m/s	20		
Volumetric flow rate, actual, m³/min	230		
Volumetric flow rate (wet STP), m³/min	210		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/hour	16000		

Gas Analyser Results	Average	
Sampling time	0908 - 1000	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.9	
Sulfur dioxide	<6 <1	
Carbon monoxide	<6 <1	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Prepared for: Nyrstar Hobart

Date 17/05/2022 Client Nyrstar Hobart Report R011346 Stack ID **MZR Dross Stack** Licence No. 7043-5 Location Hobart **Ektimo Staff** State TAS G Trenear & T Bakas **Process Conditions** MZR Furnace in operation. 220429

Isokinetic Results		Results	
	Samplingtime	0908-0959	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<2	<0.4
PM10	(PSA)	<1	<0.2
PM2.5	(PSA)	<0.3	<0.05
Isokinetic Sampling Parameters	;		
Sampling time, min		56	5
Isokinetic rate, %		103	
Gravimetric analysis date (to	otal particulate)	30-05-	2022

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.05	

VOC's C5-C20		Results		
Sam	plingtime	0920-0940		
		Concentration mg/m³	Mass Rate g/min	
Detection limit ⁽¹⁾		<0.3	<0.05	

$\textbf{(1)} \, \textbf{Unless otherwise reported, the following target compounds were found to be below detection:} \\$

Dichloro methane, Ethanol, Isopropanol, 1,1-Dichloro ethene, trans-1,2-Dichloro ethene, cis-1,2-Dichloro ethene, Chloro form, 1,1-Trichloro ethane, 1,2-Dichloro ethane, Benzene, Carbon tetrachloride, Butanol, 1-Methoxy-2-propanol, Trichloro ethylene, 1,12-Trichloro ethane, Tetrachloro ethene, Chloro benzene, Ethylbenzene, m + p-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 1,12,2-Tetrachloro ethane, Isopropylbenzene, Propylbenzene, 1,3,5-Trimethylbenzene, tetr-Butylbenzene, 12,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2,4-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Residuals as Toluene

Page: 85 of 94

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDMZR Dross StackLicence No.7043-5LocationHobart

Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions MZR Furnace in operation.

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² 4" BSP (x2) Sampling port size, number Access & height of ports Stairs 6 m Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	29.8 (wet)	30.0 (dry)	
Gas density at STP, kg/m³	1.33 (wet)	1.34 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1014		
Temperature, °C	23		
Velocity at sampling plane, m/s	20		
Volumetric flow rate, actual, m³/min	230		
Volumetric flow rate (wet STP), m³/min	210		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/hour	17000		

Isokinetic Results	Results	
Sampling time	1011-1108	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.02 <0.005	
Isokinetic Sampling Parameters		
Sampling time, min	56	
Isokinetic rate, %	106	

Prepared for: Nyrstar Hobart

Date 17/05/2022 Client Nyrstar Hobart Report R011346 Stack ID MZR Dross Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State **Process Conditions** MZR Furnace in operation. 220429

Sampling Plane Details Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Access & height of ports Stairs 6 m Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1009		
Temperature, °C	23		
Velocity at sampling plane, m/s	20		
Volumetric flow rate, actual, m³/min	240		
Volumetric flow rate (wet STP), m³/min	210		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/hour	16000		

Isokinetic Results	Results		
Samplingtime	1011-1108		
	Concentration Mass Rate		
	mg/m³ g/min		
Antimony	<0.005 <0.0009		
Arsenic	0.0037 0.00077		
Beryllium	<0.0005 <0.0001		
Cadmium	0.003		
Chromium	<0.0009 <0.0002		
Cobalt	<0.0007 <0.0001		
Copper	0.014 0.003		
Lead	0.14 0.028		
Manganese	0.025 0.0053		
Mercury	<0.0005 <0.0001		
Nickel	0.0031 0.00065		
Phosphorus	<0.02 <0.003		
Selenium	<0.004 <0.0009		
Zinc	1.3 0.28		
Total of Sb, As, Cd, Pb, Hg	≤0.15 ≤0.031		
Isokinetic Sampling Parameters			
Sampling time, min	56		
Isokinetic rate, %	107		

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDMZR Dross StackLicence No.7043-5LocationHobart

Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions MZR Furnace in operation.

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² 4" BSP (x2) Sampling port size, number Access & height of ports Stairs 6 m Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS4323.1 (2021) Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0850		
Temperature, °C	22		
Velocity at sampling plane, m/s	20		
Volumetric flow rate, actual, m³/min	230		
Volumetric flow rate (wet STP), m³/min	210		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/hour	16000		

Prepared for: Nyrstar Hobart

220429

Date17/05/2022ClientNyrstar HobartReportR011346Stack IDMZR Dross StackLicence No.7043-5LocationHobart

Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions MZR Furnace in operation.

Polycyclic Aromatic Hydroc	arbons	Resu	ılts
(PAHs)	Sampling time	0908 - 0959	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		2500	510000
2-Methylnaphthalene		<1000	<200000
Acenaphthylene		<20	<3000
Acenaphthene		<20	<3000
Fluorene		<20	<3000
Phenanthrene		120	25000
Anthracene		<20	<3000
Fluoranthene		35	7100
Pyrene		<20	<3000
Benz(a)anthracene		<20	<3000
Chrysene		33	6800
Benzo(b)fluoranthene		<20	<3000
Benzo(k)fluoranthene		<20	<3000
Benzo(e)pyrene		<40	<8000
Benzo(a)pyrene		<20	<3000
Perylene		<20	<3000
Indeno(1,2,3-cd)pyrene		<30	<6000
Dibenz(ah)anthracene		<20	<5000
Benzo(ghi)perylene		<40	<8000
Total 16 PAHs		2700	550000
Total 19 PAHs		2700	550000
BaP-TEQ			
Lower Bound		0.33	68
Middle Bound		17	3600

Abbreviations and definitions

Upper Bound

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

7100

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	56
Is okinetic rate, %	104

Page: 89 of 94

Prepared for: Nyrstar Hobart

3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter				NATA accredited	
	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate and velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	✓
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide and oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Nitrous oxide	NA	gas analyser	12%	NA	x ^h
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Speciated volatile organic compounds (VOCs)	Ektimo 344	Ektimo 344	19%	✓	✓†
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	√ ^{††}
Particulate matter (PM ₁₀ and PM _{2.5}) by particle size analysis	AS 4323.2	HRL in-house method using Malvern Mastersizer 2000	not specified	×	×**
Total (gasesous & particulate) metals (Ag, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, P, Pb, Sb, Se, Tl, Zn)	USEPA Method 29	Envirolab in-house methods Metals-006, Metals-022, Metals-021	15%	✓	√ ‡
Total fluoride	USEPA Method 13B	ALS in-house method EA144C & Ektimo 235	17%	✓	√ #,†
Polycyclic aromatic hydrocarbons (PAHs)	USEPA SW-846 0010	NMI in-house method NGCMS 11.27	21%	✓	√1
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	✓†

- Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).
- [†] Analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601. Results were reported on:
 - 2 June 2022 in report LV-002895.
 - 2 June 2022 in report LV-002905.
 - 9 June 2022 in report LV-002934.
- fravimetric analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601.
- [‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 3 June 2022 in report 296549.
- Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on:
 - 16 June 2022 in report ORG22_038.
 - 16 June 2022 in report ORG22_039.
- ** Analysis performed by HRL Technology using a laser-diffraction particle size analyser. NATA accreditation does not cover the performance of this service. Results were reported to Ektimo on 6 June 2022 in report 220633.
- # Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825. Results were reported to Ektimo on 3 June 2022 in report EN2205024.

Page: 90 of 94

Prepared for: Nyrstar Hobart

Quality Assurance/Quality Control Information 4

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

5 **Definitions**

The following symbols and abbreviations may be used in this test report:

Volume to volume ratio, dry or wet basis % v/v

Approximately < Less than > Greater than

Greater than or equal to AS Australian Standard CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half of

the particles are retained by the cyclone and half pass through it. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D₅₀ of that

cyclone and less than the D₅₀ of the preceding cyclone.

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or

changes in pipe diameter.

EPA **Environment Protection Authority** FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate

When an analyte is not present above the detection limit, the result is assumed to be equal to zero. Lower bound

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

Not applicable NA

NATA National Association of Testing Authorities

Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (µm). PM_{10} PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (µm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser diffraction. Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the

chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge oxygen

concentration and an absolute pressure of 101.325 kPa.

TM Test method United States Environmental Protection Agency **USEPA**

Velocity difference The percentage difference between the average of initial flows and after flows.

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or having

a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do

not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this range.

Page: 91 of 94

Reference: R011346 **Date:** 3/08/2022

Prepared for: Nyrstar Hobart

Ektimo

Appendix 1: Site Photos

Foreshore A

Foreshore B

Parageothite Dryer

Cadmium Smelter Plant Scrubber Stack

Copper Sulphate Crystalliser Plant Vent Stack

Casting Ventilation 1 - V1

Casting Ventilation 2 – V2

Roaster Baghouse

Anode Casting

Zinc Plant 1 Baghouse – ZP1

Zinc Plant 3 Baghouse – ZP3

MZR Dross Stack

Page: 92 of 94

Reference: R011346a **Date:** 3/08/2022

Prepared for: Nyrstar Hobart

7 Appendix 2: Weather Observations

Hobart – May 2022

		Ter	nps	Rain	Evap	Sun	Max	wind (gust			9:0	0 AM					3:0	0 PM		
Date	Day	Min	Max	Kaiii	⊏vap	Sun	Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	ווט	km/h	local	°C	%	8 th	DII	km/h	hPa	°C	%	8 th	DII	km/h	hPa
1	Su	11.8	18.8	1	4.2		WNW	52	16:44	15.4	49	4	NNW	19	1011.9	18	64	7	NW	20	1009.9
2	Мо	13.2	21.7	0	2.6		NW	50	13:16	16.4	66	6	N	22	1014.5	20	51	7	NW	26	1012.9
3	Tu	14.2	21.4	0	4		NNW	54	11:36	17.3	59	7	N	15	1011.5	20.7	41	7	NNW	24	1008.4
4	We	12.8	14.4	3.2	2.8		NNW	43	0:17	13	81	7	N	11	1008.4	12.6	73	7	SSE	9	1009.0
5	Th	4.7	14.4	0.8	1.8		S	54	22:25	6.4	88	2	NNW	15	1017.5	12.5	72	8	SSW	26	1016.8
6	Fr	6.4	13.5	85.2			S	87	2:52	9.4	91	7	SSW	17	1009.1	13.3	63	7	NNW	24	1005.5
7	Sa	9.4	12.2	5	1.8		SSW	63	14:56	11.1	82	7	SW	19	999.6	11	85	8	SSW	33	1003.4
8	Su	9.6	16.6	19.8			SW	54	0:17	12.1	75	3	N	4	1019.7	14.9	52	2	SSW	17	1021.3
9	Мо	4.6	16.1	0.2	1.8		NNW	26	10:36	7.6	79	1	NNW	15	1029.1	15.8	47	1	N	9	1027.3
10	Tu	5.8	18	0	1.2		NW	35	4:46	8.4	81	1	N	13	1031.0	16.4	51	1	NE	9	1029.4
11	We	6.1	15.1	0	2		NW	33	4:57	9.3	73	3	N	15	1031.2	14.1	62	7	NNW	15	1028.2
12	Th	9.3	14.3	0	0.4		NW	35	10:32	10.7	82	7	N	15	1024.9	14.2	72	8	NNW	7	1020.4
13	Fr	7.4	16.7	0	0.4		NNW	26	4:31	9.8	90	3	NNW	13	1017.9	15.5	69	7	ESE	13	1016.7
14	Sa	9.8	17.7	3.2	0.6		NW	46	21:52	12.4	94	7	N	7	1009.3	16.8	79	3	NW	7	1002.5
15	Su	12.3	19.9	0.2	1.2		NW	50	11:48	16	63	5	NNW	15	1004.2	18.3	51	7	WNW	17	998.2
16	Mo	7.3	12.5	8.4	2.2		WNW	72	0:46	9.7	72	2	NNW	20	1001.1	9.9	64	2	NNW	28	1001.6
17	Tu	6.1	14.2	5.8	1.8		W	59	12:22	9.7	68	6	N	20	1005.4	13.2	50	7	NNW	28	1004.1
18	We	7.1	12.5	1	1.8		W	67	12:40	9	72	7	NNW	22	1002.9	11.4	55	4	SW	30	1007.2
19	Th	9.0	13.6	0.8	1.2		WSW	57	9:26	11	65	4	SW	37	1019.6	12	50	2	SW	22	1024.3
20	Fr	5.0	13.1	0	2		WSW	50	0:17	7.7	78	7	WNW	11	1034.1	12	66	6	Е	9	1033.8
21	Sa	4.1	13	0	0.8		NNW	28	10:25	6.2	88	7	NNW	9	1036.9	12.6	59	2	N	7	1034.0
22	Su	4.0	11.5	0	1.2		NNW	33	7:42	6.7	83	7	NW	17	1032.9	11.2	65	7	NNW	15	1031.0
23	Mo	6.1	15.3	0	0.8		NNW	28	1:58	7.1	86	1	NNW	15	1032.0	15	56	1	NNW	9	1029.6
24	Tu	6.8	14.8	0	1.6		NNW	26	10:42	7.5	84	6	NNW	19	1031.4	12.7	62	2	ESE	11	1028.8
25	We	3.0	15.4	0	0.8		NNW	43	9:53	4.2	93	1	NW	26	1026.6	13.9	62	1	NE	11	1023.2
26	Th	3.7	14.8	0	1		NNW	31	1:50	4.8	95	3	NNW	20	1019.4	12.8	70	7	N	15	1014.6
27	Fr	4.7	16	0	0.6		NNW	33	4:41	12.4	69	7	WNW	9	1014.5	14.6	46	7	NW	20	1014.6
28	Sa	4.6	15.6	0	1.4		NW	37	7:29	5.6	82	6	NNW	17	1011.8	14.6	55	3	N	2	1009.0
29	Su	3.5	11.9	0	1		NNW	22	9:48	5.3	91	7	NNW	7	1010.3	10.6	76	3	Calm		1006.1
30	Mo	4.2	13.4	0	0.6		NNW	28	9:32	7.4	87	1	NNW	13	996.0	11.9	61	5	NE	9	989.9
31	Tu	4.0	10.2	0	0.8		NNW	28	5:31	5.1	87	7	NNW	9	983.9	10.1	64	7	NNW	17	983.4
	Mana	7.4	45.4		4.5				Sta	tistics fo				45	4040.4	44	04			45	10111
	Mean	7.1	15.1	0	1.5					9.5	79	4	NI	15	1016.1	14	61	4	Colm	15	1014.4
	Lowest	3	10.2	0	0.4			07		4.2	49	1	N	4	983.9	9.9	41	1	Calm	22	983.4
	Highest	14.2	21.7	85.2	4.2		S	87		17.3	95	7	SW	37	1036.9	20.7	85	8	SSW	33	1034
	Total	4 000		134.6						04 1											

IDCJDW7021.202205 Prepared at 13:03 UTC on Tuesday 21 June 2022

Page: 93 of 94

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road, Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Nyrstar Hobart, Lutana Emission Testing Report Round 2 – October 2022

Report Number R012792

Prepared for: Nyrstar Hobart

Document Information

Template Version 190722

Client Name: Nyrstar Hobart

Report Number: R012792

Date of Issue: 21 November 2022

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Glenn Trenear Senior Air Monitoring Consultant NATA Accredited Laboratory
No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart . The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Page: 2 of 40

Prepared for: Nyrstar Hobart

Table of Contents

1	F	xecutive Summary	/
_		xecutive Julillary	4
	1.1	Background	4
	1.2	Project Objective & Overview	4
	1.3	Licence Comparison	5
2	R	esults	6
	2.1	Foreshore A	6
	2.2	Foreshore B	9
	2.3	Parageothite Dryer	12
	2.4	Cadmium Smelter Plant Scrubber Stack	14
	2.5	Copper Sulphate Stack	16
	2.6	Casting Ventilation 1 – V1	18
	2.7	Casting Ventilation 2 – V2	20
	2.8	Roaster Baghouse	22
	2.9	Zinc Oxide Debagging Station	24
	2.10	Anode Casting	26
	2.11	Zinc Plant 1 Baghouse – ZP1	28
	2.12	Zinc Plant 3 Baghouse – ZP3	30
	2.13	MZR Furnace Baghouse	32
	2.14	MZR Dross Stack	34
3	Т	est Methods	. 36
4	C	Quality Assurance/Quality Control Information	. 36
5	D	efinitions	. 37
6	Α	ppendix 1: Site Photos	. 38
7	А	ppendix 2. Weather Observations	. 39

Prepared for: Nyrstar Hobart

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective & Overview

The objective of the project was to conduct a monitoring programme to quantify emissions from 14 discharge points to determine compliance with Nyrstar Hobart 's Environmental Licence and meet EPN reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*		
Foreshore A		Total particulate matter Metals		
Foreshore B	13 October 2022	Sulfur dioxide, sulfur trioxide Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen		
Parageothite Dryer				
Cadmium Smelter Plant Scrubber Stack	11 October 2022	Total particulate matter		
Copper Sulphate Crystalliser Plant Vent Stack		Metals - Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen		
Casting Ventilation 1 – V1	10 October 2022			
Casting Ventilation 2 – V2	10 October 2022			
Roaster Baghouse		Total particulate matter Metals Nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, oxygen		
Zinc Oxide Fume Debagging Station	12 October 2022			
Anode Casting				
Zinc Plant 1 Baghouse – ZP1	11 October 2022	Total particulate matter		
Zinc Plant 3 Baghouse – ZP3	10 October 2022	Metals Nitrogen oxides, carbon monoxide, carbon		
MZR Furnace Baghouse	12 October 2022	dioxide, oxygen		
MZR Dross Stack	12 October 2022			

^{*} Flow rate, velocity, temperature and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

Prepared for: Nyrstar Hobart

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m³	100	0.56
5 1 1/7:10 0 11 10:1	Oxides of nitrogen (as NO ₂)	g/m³	2	0.036
Foreshore A (Tail Gas Scrubber) Stack	Particulates	mg/m³	100	<1
	Sulphur dioxide	g/m³	7.2	0.0013
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m³	100	1.4
	Oxides of nitrogen (as NO ₂)	g/m³	2	0.044
Foreshore B (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	3.1
	Sulphur dioxide	g/m ³	7.2	0.0012
Anode Casting Plant Exhaust		8/	7.2	4.7
V1 Furnace Stack	7			<3
V2 Furnace Stack				11
Zinc Dust Plant Baghouse 1 Stack	7			<3
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	12
Cadmium Smelter Plant Scrubber Stack	7			<2
Copper Sulphate Crystalliser Plant				5.8
Roaster Baghouse				<2
Paragoethite Dryer Baghouse				5.2
Anode Casting Plant Exhaust				≤0.17
V1 Furnace Stack				≤0.068
V2 Furnace Stack				≤0.091
Zinc Dust Plant Baghouse 1 Stack			5	≤0.056
Zinc Dust Plant Baghouse 3 Stack	Metals - Pb, As, Sb, Cd, Hg (1)	mg/m ³		≤0.16
Cadmium Smelter Plant Scrubber Stack				≤0.47
Copper Sulphate Crystalliser Plant				≤0.10
Roaster Baghouse				≤0.085
Paragoethite Dryer Baghouse				≤0.42
Anode Casting Plant Exhaust				0.0022
V1 Furnace Stack				<0.001
V2 Furnace Stack				0.0012
Zinc Dust Plant Baghouse 1 Stack				<0.0008
Zinc Dust Plant Baghouse 3 Stack	Metals - Hg	mg/m ³	1	<0.001
Cadmium Smelter Plant Scrubber Stack				<0.002
Copper Sulphate Crystalliser Plant				0.0051
Roaster Baghouse				0.018
Paragoethite Dryer Baghouse				<0.001
Anode Casting Plant Exhaust				0.0084
V1 Furnace Stack				0.0019
V2 Furnace Stack				0.0013
Zinc Dust Plant Baghouse 1 Stack				0.0073
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd	mg/m ³	1	0.0011
Cadmium Smelter Plant Scrubber Stack				0.011
Copper Sulphate Crystalliser Plant				0.028
Roaster Baghouse				0.0046
Paragoethite Dryer Baghouse				0.0097

⁽¹⁾ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

 ${\it Refer to the Test Methods table for the measurement uncertainties}.$

Prepared for: Nyrstar Hobart

2 Results

2.1 Foreshore A

Date 13/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream. 22 1003

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Vertical Circular Duct orientation & shape Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20 Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0826 & 1029		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1800		
Mass flow rate (wet basis), kg/hour	140000		

Gas Analyser Results	Average
Sampling	ime 0855 - 0954
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	36 63
Carbon monoxide	<6 <10
	Concentration %v/v
Carbon dioxide	0.5
Oxygen	10.6

Page: 6 of 40

Prepared for: Nyrstar Hobart

Date 13/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Foreshore A Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream.

Isokinetic Results	Results	
Sampling time	0840-1022	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	<1 <3	
Antimony	<0.003 <0.006	
Arsenic	<0.002 <0.003	
Beryllium	<0.0004 <0.0007	
Cadmium	0.0027 0.0048	
Chromium	0.0017 0.003	
Cobalt	<0.0005 <0.0009	
Copper	0.0037 0.0066	
Lead	0.029 0.052	
Manganese	0.048 0.084	
Mercury	0.0031 0.0055	
Nickel	0.0054 0.0096	
Phosphorus	<0.01 <0.02	
Selenium	<0.003 <0.006	
Zinc	0.38 0.68	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	99	
Gravimetric analysis date (total particulate)	21-10-2022	

Page: 7 of 40

Prepared for: Nyrstar Hobart

Date 13/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1030 & 1233		
Temperature, °C	17		
Velocity at sampling plane, m/s	18		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1800		
Mass flow rate (wet basis), kg/hour	140000		

Isokinetic Results	Results
Sampling time	1040-1222
	Concentration Mass Rate mg/m³ g/min
Sulfur dioxide	1.3 2.4
Sulfur trioxide	0.56 1
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	98

Page: 8 of 40

Prepared for: Nyrstar Hobart

2.2 Foreshore B

Date 13/10/2022 Nyrstar Hobart Client Report R012792 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

X 2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.5 (wet)	28.7 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0830 & 1027		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1800		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Gas Analyser Results	Average
Samplingtime	1034 - 1133
Combustion Gases Nitrogen oxides (as NO ₂) Carbon monoxide	Concentration Mass Rate mg/m³ g/min 44 74 <6 <10
	Concentration %v/v
Carbon dioxide	0.6
Oxygen	10.7

Page: 9 of 40

Prepared for: Nyrstar Hobart

Date 13/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream.

Isokinetic Results	Results
Samplingtime	0840-1022
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	3.1 5.3
Antimony	<0.004 <0.007
Arsenic	<0.002 <0.004
Beryllium	<0.0005 <0.0008
Cadmium	0.0043 0.0072
Chromium	0.0046 0.0077
Cobalt	<0.0009 <0.002
Copper	0.0069 0.012
Lead	0.034 0.058
Manganese	0.064 0.11
Mercury	0.0058 0.0098
Nickel	0.031 0.053
Phosphorus	<0.02 <0.03
Selenium	<0.004 <0.007
Zinc	0.78 1.3
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	94
Gravimetric analysis date (total particulate)	21-10-2022

Prepared for: Nyrstar Hobart

Date 13/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State **Process Conditions** Unit 5 producing 53000 m3/hr & Unit 6 producing 101000 m3/hr of gas through the acid stream.

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20 Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1033 & 1230		
Temperature, °C	17		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1800		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/hour	130000		

Isokinetic Results	Results		
Samplingtime	1040-1222		
	Concentration Mass Rate mg/m³ g/min		
Sulfur dioxide	1.2 2.1		
Sulfur trioxide	1.4 2.3		
Isokinetic Sampling Parameters			
Sampling time, min	100		
Isokinetic rate, %	97		

Prepared for: Nyrstar Hobart

2.3 Parageothite Dryer

Date 11/10/2022 Client Nyrstar Hobart Report Stack ID R012792 Parageothite Dryer Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** 7.1 m3/hr of dirt and 1.89 m3/hr of bypass flow into the drum. 221003

Sampling Plane Details Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	28		
Gas molecular weight, g/g mole	26.2 (wet)	29.3 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.31 (dry)	
Gas density at discharge conditions, kg/m³	0.88		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1550 & 1711		
Temperature, °C	94		
Velocity at sampling plane, m/s	9.9		
Volumetric flow rate, actual, m³/min	420		
Volumetric flow rate (wet STP), m³/min	310		
Volumetric flow rate (dry STP), m³/min	230		
Mass flow rate (wet basis), kg/hour	22000		

Gas Analyser Results	Average		
Sampling time	1605 - 1704		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	50 11		
Carbon monoxide	<6 <1		
	Concentration %v/v		
Carbon dioxide	3.6		
Oxygen	15.5		

Prepared for: Nyrstar Hobart

221003

Date11/10/2022ClientNyrstar HobartReportR012792Stack IDParageothite Dryer

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTASProcess Conditions7.1 m3/hr of dirt and 1.89 m3/hr of bypass flow into the drum.

Isokinetic Results	Results		
Sampling time	1605-1705		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	5.2 1.2		
Antimony	<0.006 <0.001		
Arsenic	0.011 0.0025		
Beryllium	<0.0009 <0.0002		
Cadmium	0.0097 0.0022		
Chromium	0.017 0.0038		
Cobalt	0.0015 0.00034		
Copper	0.047 0.011		
Lead	0.4 0.09		
Manganese	0.24 0.053		
Mercury	<0.001 <0.0003		
Nickel	0.039 0.0088		
Phosphorus	<0.04 <0.01		
Selenium	<0.008 <0.002		
Zinc	0.82 0.19		
Total of Sb, As, Cd, Pb, Hg	≤0.42 ≤0.096		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	94		
Gravimetric analysis date (total particulate)	21-10-2022		

Prepared for: Nyrstar Hobart

2.4 Cadmium Smelter Plant Scrubber Stack

Date 11/10/2022 Client Nyrstar Hobart Stack ID Report R012792 Cadmium Smelter Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State **Process Conditions** Fume extraction while furnace in operation. 22 1003

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

Vertical

Vertical Circular

Bend 1 D

Change in diameter 2 D

No. traverses & points sampled

2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1400 & 1514		
Temperature, °C	23		
Velocity at sampling plane, m/s	11		
Volumetric flow rate, actual, m³/min	120		
Volumetric flow rate (wet STP), m³/min	110		
Volumetric flow rate (dry STP), m³/min	110		
Mass flow rate (wet basis), kg/hour	8400		

Gas Analyser Results	Average		
Sampling time	1411 - 1510		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.5		
Carbon monoxide	<6 <0.6		
	Concentration %v/v		
Carbon dioxide	<0.4		
Oxygen	20.8		

Page: 14 of 40

Prepared for: Nyrstar Hobart

Date 11/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Cadmium Smelter Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Fume extraction while furnace in operation. 221003

Isokinetic Results	Results			
Sampling time	1410-1510			
	Concentration Mass Rate mg/m³ g/min			
T. A. J	•			
Total particulate matter	<2 <0.3			
Antimony	<0.007 <0.0007			
Arsenic	0.012 0.0013			
Beryllium	<0.001 <0.0001			
Cadmium	0.011 0.0011			
Chromium	0.019 0.002			
Cobalt	0.0017 0.00018			
Copper	0.052 0.0055			
Lead	0.44 0.046			
Manganese	0.26 0.028			
Mercury	<0.002 <0.0002			
Nickel	0.043 0.0046			
Phosphorus	<0.05 <0.005			
Selenium	<0.008 <0.0009			
Zinc	0.91 0.097			
Total of Sb, As, Cd, Pb, Hg	≤0.47 ≤0.05			
Isokinetic Sampling Parameters				
Sampling time, min	60			
Isokinetic rate, %	99			
Gravimetric analysis date (total particulate)	21-10-2022			

Prepared for: Nyrstar Hobart

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date11/10/2022ClientNyrstar HobartReportR012792Stack IDCopper Sulphate Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Production rate - 10.6 tonnes/day, Dryer Outlet Temperature - 48.5 deg C, Feed rate into Dryer - 20%

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Exit 2 D

Bend 4 D

No. traverses & points sampled

2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	8.8		
Gas molecular weight, g/g mole	28.1 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1000 & 1115		
Temperature, °C	48		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/hour	12000		

Gas Analyser Results	Average		
Samplingtime	1011 - 1110		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.6		
Carbon monoxide	<6 <0.8		
	Concentration %v/v		
Carbon dioxide	<0.4		
Oxygen	20.8		

Page: 16 of 40

Prepared for: Nyrstar Hobart

Date 11/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Copper Sulphate Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Production rate - 10.6 tonnes/day, Dryer Outlet Temperature - 48.5 deg C, Feed rate into Dryer - 20%

Isokinetic Results	Results		
Samplingtime	1010-1112		
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	5.8	0.81	
Antimony	<0.007	<0.0009	
Arsenic	<0.004	<0.0005	
Beryllium	<0.0009	<0.0001	
Cadmium	0.028	0.004	
Chromium	0.01	0.0015	
Cobalt	0.0023	0.00032	
Copper	0.035	0.005	
Lead	0.06	0.0084	
Manganese	0.28	0.039	
Mercury	0.0051	0.00071	
Nickel	0.083	0.012	
Phosphorus	<0.03	<0.004	
Selenium	<0.007	<0.001	
Zinc	1.2	0.17	
Total of Sb, As, Cd, Pb, Hg	≤0.1	≤0.014	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	95		
Gravimetric analysis date (total particulate)	21-10-20	022	

Prepared for: Nyrstar Hobart

2.6 Casting Ventilation 1 – V1

Date10/10/2022ClientNyrstar HobartReportR012792Stack IDCasting Ventilation 1 - V1Licence No.7043-5LocationHobart

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process ConditionsCasting area in normal operation.22

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1320 & 1440		
Temperature, °C	31		
Velocity at sampling plane, m/s	23		
Volumetric flow rate, actual, m³/min	430		
Volumetric flow rate (wet STP), m³/min	390		
Volumetric flow rate (dry STP), m³/min	390		
Mass flow rate (wet basis), kg/hour	30000		

Gas Analyser Results	Average
Sampling time	1331 - 1430
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <2
Carbon monoxide	<6 <2
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Page: 18 of 40

Prepared for: Nyrstar Hobart

Date 10/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Casting Ventilation 1 - V1 Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 221003

Isokinetic Results	Results		
Samplingtime	1330-1430		
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	<3	<1	
Antimony	<0.009	<0.003	
Arsenic	<0.006	<0.002	
Beryllium	<0.001	<0.0004	
Cadmium	0.0019	0.00074	
Chromium	0.0023	0.0009	
Cobalt	<0.001	<0.0005	
Copper	0.0062	0.0024	
Lead	0.051	0.02	
Manganese	0.14	0.054	
Mercury	<0.001	<0.0005	
Nickel	0.003	0.0012	
Phosphorus	<0.03	<0.01	
Selenium	<0.009	<0.003	
Zinc	1.1	0.44	
Total of Sb, As, Cd, Pb, Hg	≤0.068	≤0.026	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	104		
Gravimetric analysis date (total particulate)	21-10-2022		

Prepared for: Nyrstar Hobart

2.7 Casting Ventilation 2 – V2

Date 10/10/2022 Client Nyrstar Hobart

Report R012792 **Stack ID** Casting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process ConditionsCasting area in normal operation.22

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.278 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

595 mm

Vertical Circular

Exit 2 D

Centrifugal fan 2 D

No. traverses & points sampled

1 6

Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1350 & 1508		
Temperature, °C	46		
Velocity at sampling plane, m/s	20		
Volumetric flow rate, actual, m³/min	330		
Volumetric flow rate (wet STP), m³/min	280		
Volumetric flow rate (dry STP), m³/min	280		
Mass flow rate (wet basis), kg/hour	22000		

Gas Analyser Results	Average
Sampling time	1400 - 1459
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <1
Carbon monoxide	<6 <2
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Page: 20 of 40

Prepared for: Nyrstar Hobart

Date10/10/2022ClientNyrstar HobartReportR012792Stack IDCasting Ventilation 2 - V2Licence No.7043-5LocationHobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process ConditionsCasting area in normal operation.22 1003

Isokinetic Results	Results
Sampling time	1400-1500
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	11 3.1
Antimony	<0.005 <0.001
Arsenic	0.01 0.0028
Beryllium	<0.0006 <0.0002
Cadmium	0.0013 0.00036
Chromium	0.012 0.0033
Cobalt	<0.0008 <0.0002
Copper	0.0052 0.0014
Lead	0.074 0.02
Manganese	0.19 0.054
Mercury	0.0012 0.00035
Nickel	0.014 0.0039
Phosphorus	<0.02 <0.007
Selenium	<0.005 <0.001
Zinc	4.6 1.3
Total of Sb, As, Cd, Pb, Hg	≤0.091 ≤0.025
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	91
Gravimetric analysis date (total particulate)	21-10-2022

Prepared for: Nyrstar Hobart

2.8 **Roaster Baghouse**

Date 12/10/2022 Client Nyrstar Hobart Stack ID Report R012792 Roaster Baghouse Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions**

Roaster 6 - 40 t/hr, Roaster 5 - 21 t/hr (Conveyor all in operation), fumes were off.

Sampling Plane Details Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.13		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0950 & 1109		
Temperature, °C	42		
Velocity at sampling plane, m/s	4.1		
Volumetric flow rate, actual, m³/min	29		
Volumetric flow rate (wet STP), m³/min	25		
Volumetric flow rate (dry STP), m³/min	25		
Mass flow rate (wet basis), kg/hour	1900		

Gas Analyser Results	Average		
Sampling time	0955 - 1054		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.1		
Sulfur dioxide	3400 84		
Carbon monoxide	<6 <0.1		
	Concentration %v/v		
Carbon dioxide	<0.4		
Oxygen	20.4		

Prepared for: Nyrstar Hobart

221003

Date12/10/2022ClientNyrstar HobartReportR012792Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 40 t/hr, Roaster 5 - 21 t/hr (Conveyor all in operation), fumes were off.

Isokinetic Results	Results
Sampling time	0955-1103
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	<2 <0.05
Antimony	<0.005 <0.0001
Arsenic	<0.003 <0.00007
Beryllium	<0.0007 <0.00002
Cadmium	0.0046 0.00011
Chromium	0.0013 0.000033
Cobalt	<0.0008 <0.00002
Copper	0.0088 0.00022
Lead	0.054 0.0013
Manganese	0.054 0.0013
Mercury	0.018 0.00044
Nickel	0.0039 0.000096
Phosphorus	<0.02 <0.0005
Selenium	<0.005 <0.0001
Zinc	0.68 0.017
Total of Sb, As, Cd, Pb, Hg	≤0.085 ≤0.0021
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	100
Gravimetric analysis date (total particulate)	21-10-2022

Prepared for: Nyrstar Hobart

2.9 Zinc Oxide Fume Debagging Station

Date 12/10/2022 Client Nyrstar Hobart Report Stack ID R012792 Zinc Oxide Fume Debagging Station Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Fume unloading for duration of test. 221003

Sampling Plane Details Sampling plane dimensions 250 mm Sampling plane area 0.0491 m² Sampling port size, number 3" Flange (x4) Duct orientation & shape Vertical Circular Downstream disturbance Cowl >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 2 4 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1305		
Temperature, °C	29		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/min	35		
Volumetric flow rate (wet STP), m³/min	32		
Volumetric flow rate (dry STP), m³/min	31		
Mass flow rate (wet basis), kg/hour	2500		

Gas Analyser Results		Avera	age
San	npling time	1306 - 1339	
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.1
Carbon monoxide		<6	<0.2
		Concent %v/	
Carbon dioxide		<0.	4
Oxygen		20.9	9

Prepared for: Nyrstar Hobart

Date12/10/2022ClientNyrstar Hobart

ReportR012792Stack IDZinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process ConditionsFume unloading for duration of test.22 1003

Isokinetic Results	Results		
Sampling time	1305-1341		
	Concentration Mass Rate		
	mg/m³ g/min		
Total particulate matter	<4 <0.1		
Antimony	<0.009 <0.0003		
Arsenic	<0.005 <0.0001		
Beryllium	<0.001 <0.00004		
Cadmium	0.0044 0.00014		
Chromium	0.0031 0.000099		
Cobalt	<0.001 <0.00004		
Copper	0.0088 0.00028		
Lead	0.085 0.0027		
Manganese	0.089 0.0028		
Mercury	<0.001 <0.00003		
Nickel	0.01 0.00032		
Phosphorus	<0.03 <0.0009		
Selenium	<0.009 <0.0003		
Zinc	0.9 0.028		
Isokinetic Sampling Parameters			
Sampling time, min	28		
Isokinetic rate, %	99		
Gravimetric analysis date (total particulate)	21-10-2022		

Prepared for: Nyrstar Hobart

2.10 Anode Casting

Date 12/10/2022 Client Nyrstar Hobart Stack ID Report R012792 Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State **Process Conditions** Casting area in normal operation. 221003

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0742 & 0855		
Temperature, °C	26		
Velocity at sampling plane, m/s	7.1		
Volumetric flow rate, actual, m³/min	68		
Volumetric flow rate (wet STP), m³/min	62		
Volumetric flow rate (dry STP), m³/min	61		
Mass flow rate (wet basis), kg/hour	4800		

Gas Analyser Results	Average
Sampling time	0750 - 0849
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <0.3
Carbon monoxide	<6 <0.4
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Prepared for: Nyrstar Hobart

Date 12/10/2022 Client Nyrstar Hobart Report R012792 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 221003

Isokinetic Results	Resu	llts	
Samplingtime	0750-0	0850	
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	4.7	0.29	
Antimony	<0.008	<0.0005	
Arsenic	<0.004	<0.0003	
Beryllium	<0.001	<0.0006	
Cadmium	0.0084	0.00051	
Chromium	0.015	0.0009	
Cobalt	<0.001	<0.00007	
Copper	0.018	0.0011	
Lead	0.15	0.0089	
Manganese	0.21	0.013	
Mercury	0.0022	0.00013	
Nickel	0.0096	0.00058	
Phosphorus	<0.03	<0.002	
Selenium	<0.008	<0.0005	
Zinc	0.48	0.029	
Total of Sb, As, Cd, Pb, Hg	≤0.17	≤0.01	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	97		
Gravimetric analysis date (total particulate)	21-10-	2022	

Prepared for: Nyrstar Hobart

2.11 Zinc Plant 1 Baghouse – ZP1

Date 11/10/2022 Client Nyrstar Hobart Report Stack ID Zinc Plant 1 Baghouse - ZP 1 R012792 Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Normal production in Zinc Plant 1 area 221003

Sampling Plane Details Sampling plane dimensions 390 x 500 mm Sampling plane area 0.195 m² Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 3 6 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1155 & 1309		
Temperature, °C	23		
Velocity at sampling plane, m/s	7.1		
Volumetric flow rate, actual, m³/min	83		
Volumetric flow rate (wet STP), m³/min	78		
Volumetric flow rate (dry STP), m³/min	77		
Mass flow rate (wet basis), kg/hour	6000		

Gas Analyser Results	Average
Sampling time	1205 - 1304
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <0.3
Carbon monoxide	<6 <0.5
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Prepared for: Nyrstar Hobart

221003

Date 11/10/2022 Client Nyrstar Hobart

Report R012792 Stack ID Zinc Plant 1 Baghouse - ZP 1

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Normal production in Zinc Plant 1 area **Process Conditions**

Isokinetic Results	Resu	lts	
Sampling time	1200-1	303	
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	<3	<0.2	
Antimony	<0.007	<0.0005	
Arsenic	<0.003	<0.0002	
Beryllium	<0.0009	<0.00007	
Cadmium	0.0073	0.00056	
Chromium	<0.002	<0.0001	
Cobalt	<0.001	<0.00009	
Copper	0.01	0.00079	
Lead	0.037	0.0029	
Manganese	0.089	0.0069	
Mercury	<0.0008	<0.0006	
Nickel	0.002	0.00015	
Phosphorus	<0.03	<0.002	
Selenium	<0.007	<0.0005	
Zinc	0.33	0.026	
Total of Sb, As, Cd, Pb, Hg	≤0.056	≤0.0043	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	102		
Gravimetric analysis date (total particulate)	21-10-	2022	

Prepared for: Nyrstar Hobart

2.12 Zinc Plant 3 Baghouse – ZP3

Date 10/10/2022 Client Nyrstar Hobart

Report R012792 Stack ID Zinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 3 area.

221003

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0638 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

285 mm

0.0638 m²

2" Holes (x2)

Horizontal Circular

Bend 1 D

Bend 4 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

Mass flow rate (wet basis), kg/hour

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.01		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1450 & 1615		
Temperature, °C	78		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	57		
Volumetric flow rate (wet STP), m³/min	45		
Volumetric flow rate (dry STP), m ³ /min	44		

Gas Analyser Results	Average
Sampling time	1507 - 1606
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <0.2
Carbon monoxide	<6 <0.3
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

3500

Page: 30 of 40

Prepared for: Nyrstar Hobart

Date10/10/2022ClientNyrstar Hobart

ReportR012792Stack IDZinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process ConditionsNormal production in Zinc Plant 3 area.22 1003

Isokinetic Results	Results
Sampling time	1500-1607
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	12 0.53
Antimony	<0.007 <0.0003
Arsenic	<0.003 <0.0001
Beryllium	<0.0009 <0.00004
Cadmium	0.0011 0.000047
Chromium	0.0017 0.000075
Cobalt	<0.001 <0.00005
Copper	0.0039 0.00017
Lead	0.15 0.0065
Manganese	0.12 0.0054
Mercury	<0.001 <0.00004
Nickel	0.003 0.00013
Phosphorus	<0.03 <0.001
Selenium	<0.007 <0.0003
Zinc	8.8 0.39
Total of Sb, As, Cd, Pb, Hg	≤0.16 ≤0.007
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	99
Velocity difference, %	-4
Gravimetric analysis date (total particulate)	21-10-2022

Prepared for: Nyrstar Hobart

2.13 MZR Furnace Baghouse

Date 12/10/2022 Client Nyrstar Hobart Report Stack ID R012792 MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** MZR Furnace in operation. 221003

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

Bend 2 D

Upstream disturbance

Bend 6 D

No. traverses & points sampled

2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.7		
Gas molecular weight, g/g mole	28.9 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.00		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1500 & 1621		
Temperature, °C	72		
Velocity at sampling plane, m/s	5.1		
Volumetric flow rate, actual, m³/min	60		
Volumetric flow rate (wet STP), m³/min	46		
Volumetric flow rate (dry STP), m³/min	45		
Mass flow rate (wet basis), kg/hour	3600		

Gas Analyser Results	Average
Sampling time	1509 - 1546
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	16 0.7
Carbon monoxide	24 1.1
	Concentration %v/v
Carbon dioxide	2.6
Oxygen	17.4

Prepared for: Nyrstar Hobart

Date 12/10/2022 Client Nyrstar Hobart Report R012792 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 221003

Isokinetic Results	Resu	lts
Sampling time	1505-2	611
	Concentration mg/m³	Mass Rate g/min
Total particulate matter	<2	<0.1
Antimony	<0.005	<0.0002
Arsenic	0.003	0.00014
Beryllium	<0.0007	<0.00003
Cadmium	0.0076	0.00034
Chromium	0.034	0.0015
Cobalt	0.0022	0.0001
Copper	0.015	0.00068
Lead	0.082	0.0037
Manganese	0.1	0.0047
Mercury	0.0014	0.000064
Nickel	0.11	0.0049
Phosphorus	<0.02	<0.0009
Selenium	<0.007	<0.0003
Zinc	1.8	0.082
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	99	
Gravimetric analysis date (total particulate)	21-10-	2022

Reference: R012792 **Date:** 21/11/2022

Prepared for: Nyrstar Hobart

2.14 MZR Dross Stack

Date 12/10/2022 Client Nyrstar Hobart Report Stack ID MZR Dross Stack R012792 Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** MZR Furnace in operation. 221003

Sampling Plane Details Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.4		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1530		
Temperature, °C	23		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	160		
Volumetric flow rate (dry STP), m³/min	160		
Mass flow rate (wet basis), kg/hour	12000		

Gas Analyser Results	Average
Sampling time	1548 - 1621
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <0.7
Carbon monoxide	<6 <1
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Reference: R012792 **Date**: 21/11/2022

Prepared for: Nyrstar Hobart

Date 12/10/2022 Client Nyrstar Hobart Report R012792 Stack ID MZR Dross Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 221003

Isokinetic Results	Resu	lts
Samplingtime	1531-1	1628
	Concentration mg/m³	Mass Rate g/min
Total particulate matter	<2	<0.3
Antimony	<0.005	<0.0008
Arsenic	<0.003	<0.0005
Beryllium	<0.0006	<0.0001
Cadmium	0.0084	0.0013
Chromium	0.0019	0.00029
Cobalt	<0.001	<0.0002
Copper	0.0094	0.0015
Lead	0.081	0.013
Manganese	0.27	0.043
Mercury	<0.0006	<0.0001
Nickel	0.033	0.0053
Phosphorus	<0.02	<0.003
Selenium	<0.005	<0.0008
Zinc	0.81	0.13
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	102	
Gravimetric analysis date (total particulate)	21-10-	2022

Reference: R012792 **Date:** 21/11/2022

Prepared for: Nyrstar Hobart

3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	✓
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	✓ ^{††}
Total (gaseous & particulate) metals (Ag,		Envirolab in-house methods			
As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, P,	USEPA Method 29	Metals-006, Metals-020,	15%	✓	√ ‡
Pb, Sb, Se, Tl, Zn)		Metals-021 & Metals-022			
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	✓†
					221025

Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

4 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Page: 36 of 40

[†] Analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601. Results were reported to Ektimo on 28 October 2022 in report LV-003477

^{††} Gravimetric analysis conducted at the Ektimo Mitcham, VIC laboratory NATA accreditation number 14601.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 1 November 2022 in report 308762

Reference: R012792 Date: 21/11/2022

Prepared for: Nyrstar Hobart

Definitions 5

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry or wet basis

Approximately Less than > Greater than

≥ Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water

AS BSP British standard pipe

CARB Californian Air Resources Board

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half D₅₀

of the particles are retained by the cyclone and half pass through it. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA) DEHP Department of Environment and Heritage Protection (QLD)

Environment Protection Authority EPA Fourier transform infra-red FTIR

Intersociety Committee, Methods of Air Sampling and Analysis ISC

ISO International Organisation for Standardisation

Individual threshold estimate ITE

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities NIOSH

National Institute of Occupational Safety and Health NT Not tested or results not required

OM Other approved method

ΟU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

 PM_{10} Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (µm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus TOC

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows. Vic EPA Victorian Environment Protection Authority

Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or VOC

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit. 95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

Page: 37 of 40

Reference: R012792[DRAFT]

Date: 21/11/2022

Prepared for: Nyrstar Hobart

Ektimo

Appendix 1: Site Photos 6

Foreshore A

Parageothite Dryer

Cadmium Smelter Plant Scrubber Stack

Copper Sulphate Crystalliser Plant Vent Stack

Casting Ventilation 1-V1

Casting Ventilation 2 – V2

Roaster Baghouse

Anode Casting

Zinc Plant 1 Baghouse – ZP1

Zinc Plant 3 Baghouse – ZP3

MZR Furnace Stack

Reference: R012792[DRAFT]

Date: 21/11/2022

Prepared for: Nyrstar Hobart

7 Appendix 2. Weather Observations

Hobart - October 2022

		Ter	nps	Doin	Evap	Cum	Max	wind g	gust			9:00) AM					3:00	PM		
Date	Day	Min	Max	Naiii	⊏vap	Juli	Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	ווט	km/h	local	°C	%	8 th	DII	km/h	hPa	°C	%	8 th	DII	km/h	hPa
10	Мо	5.1	18.7	0			NE	33	0.471	11.3	63		ESE	4	1022	16.2	52		NNE	13	1022
11	Tu	7.9	19.8	0.4			NE	37	15:57	12.4	71		NNW	13	1025	17.6	53		Е	13	1021
12	We	10.5	18.8	0			NNE	44	18:36	15.3	69		NNE	7	1022	18.3	65		NNE	22	1019
13	Th	14.3	17.7	0.6			Ν	56	19:29	16.3	75		NNE	17	1012	16.9	76		NE	19	1008
									Statist	ics for (Octobe	er 2022	?								
	Mean	8.7	16.9							12.3	70			14	1014	15.4	60			18	1013
	Lowest	3.1	12.3	0						8.2	48		Calm		978.6	10.6	38		SSW	9	979
I	Highest	14.3	24.3	18.6			WNW	91		18.1	98		S	35	1036	23.2	94	١	WNW	39	1033
	Total			90.2																	

Page: 39 of 40

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Nyrstar Hobart , Lutana
Triennial testing of Start-up Scrubber - 2022
Report Number R013215

Prepared for: Nyrstar Hobart

Document Information

Template Version 190722

Client Name: Nyrstar Hobart

Report Number: R013215

Date of Issue: 16 September 2022

Attention: Kylie Veale

Address: Risdon Road

Air Monitoring Consultant

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

_

NATA Accredited Laboratory No. 14601

Glenn Trenear Ektimo Signatory

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Page: 2 of 10

Prepared for: Nyrstar Hobart

Table of Contents

1	E	xecutive Summary	۷.
	1.1	Background	۷.
	1.2	Project Objective & Overview	۷.
	1.3	Licence Comparison	۷.
		results	
		Start Up Scrubber Stack	
3	Т	est Methods	. 7
4	С	Quality Assurance/Quality Control Information	. 7
5	D	Definitions	3.
6		ppendix 1: Site Photo	
J	^	ppendix 1. Site i noto	. =
7	Α	ppendix 2: Weather Observations	و.

Prepared for: Nyrstar Hobart

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Tasmanian EPN notice 7043/5.

1.2 Project Objective & Overview

The objectives of the project were to conduct a monitoring programme to quantify emissions from one discharge point to determine compliance with Nyrstar Hobart 's Tasmanian EPN notice 7043/5.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*		
		Total particulate matter		
Start Up Scrubber	3 August 2022	Total particulate matter Metals Sulfur dioxide, nitrogen oxides, carbon monoxide, car		
		Sulfur dioxide, nitrogen oxides, carbon monoxide, carbon dioxide, oxygen		

^{*} Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are withing the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5 (last amended on 11 April 2019).

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfur dioxide	g/m³	7.2	0.037
Start Up Scrubber Stack	Oxides of nitrogen (as NO ₂)	g/m³	2	0.0058
	Particulates	mg/m³	100	7.3

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Method table for the measurement uncertainty.

Page: 4 of 10

Prepared for: Nyrstar Hobart

2 Results

2.1 Start Up Scrubber Stack

Date3/08/2022ClientNyrstar HobartReportR013215Stack IDStartup Scrubber StackLicence No.7043/5LocationHobart

Ektimo Staff Mathew Hutton, Tony Bakas **State** TAS

Process Conditions Start-up Scrubber running under load during testing

Sampling Plane DetailsSampling plane dimensions990 mmSampling plane area0.77 m²Sampling port size, number & depth4" Flange (x2), 90 mmDuct orientation & shapeVertical CircularDownstream disturbanceExit >2 DUpstream disturbanceCentrifugal fan >6 DNo. traverses & points sampled2 12

Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters Moisture content, %v/v 2.9 Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.30 (dry) Gas density at discharge conditions, kg/m³ 1.12 **Gas Flow Parameters** Flow measurement time(s) (hhmm) 0550 & 0710 Temperature, °C 34 Velocity at sampling plane, m/s 27 Volumetric flow rate, actual, m³/min 1200 Volumetric flow rate (wet STP), m³/min 1100 Volumetric flow rate (dry STP), m³/min 1100 Mass flow rate (wet basis), kg/hour 84000

Gas Analyser Results	Average
Sampling time	0614 - 0713
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	5.8 6.1
Sulfur dioxide	37 39
Carbon monoxide	320 340
	Concentration % v/v
Carbon dioxide	0.7
Oxygen	19.8

Page: 5 of 10

Prepared for: Nyrstar Hobart

Date 3/08/2022 Client Nyrstar Hobart Report R013215 Stack ID Startup Scrubber Stack Licence No. 7043/5 Location Hobart Ektimo Staff TAS Mathew Hutton, Tony Bakas State **Process Conditions** Please refer to client records.

Isokinetic Results	Results
Sampling time	0600-0705
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	7.3 7.7
Antimony	<0.009
Arsenic	<0.006 <0.006
Beryllium	<0.001 <0.001
Cadmium	0.013 0.014
Chromium	0.002 0.0021
Cobalt	<0.001 <0.002
Lead	0.18 0.2
Manganese	0.051 0.054
Mercury	0.0021 0.0023
Nickel	0.0029 0.0031
Selenium	0.012 0.013
Tin	<0.004 <0.004
Vanadium	<0.002 <0.002
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	99
Gravimetric analysis date (total particulate)	17-08-2022

Prepared for: Nyrstar Hobart

3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

			NATA ac	credited
Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
AS 4323.1	NA	NA	✓	NA
ISO 10780	ISO 10780	8%, 2%, 7%	NA	✓
Ektimo 050	Ektimo 050	not specified	✓	✓
NA	USEPA Method 3	not specified	NA	✓
USEPA Method 3A	USEPA Method 3A	13%	✓	✓
USEPA Method 10	USEPA Method 10	12%	✓	✓
USEPA Method 7E	USEPA Method 7E	12%	✓	✓
USEPA Method 6C	USEPA Method 6C	12%	✓	✓
AS 4323.2	AS 4323.2	7%	✓	✓**
USEPA Method 29 [£]	Envirolab in-house methods Metals-006, Metals-020, Metals-021 & Metals-022	15%	× ^{‡‡}	✓‡
USEPA Method 29	Envirolab in-house methods Metals-006, Metals-020, Metals-021 & Metals-022	15%	√	✓‡
	AS 4323.1 ISO 10780 Ektimo 050 NA USEPA Method 3A USEPA Method 10 USEPA Method 7E USEPA Method 6C AS 4323.2 USEPA Method 29 [£]	AS 4323.1 NA ISO 10780 ISO 10780 Ektimo 050 Ektimo 050 NA USEPA Method 3 USEPA Method 3A USEPA Method 10 USEPA Method 7E USEPA Method 7E USEPA Method 6C USEPA Method 6C AS 4323.2 AS 4323.2 USEPA Method 29 [£] Envirolab in-house methods Metals-021 & Metals-022 Envirolab in-house methods Metals-020, Metals-020, Metals-020, Metals-020, Metals-020, Metals-006, Metals-020,	AS 4323.1 NA NA ISO 10780 ISO 10780 8%, 2%, 7% Ektimo 050 Ektimo 050 not specified NA USEPA Method 3 not specified USEPA Method 3A USEPA Method 3A 13% USEPA Method 10 USEPA Method 10 12% USEPA Method 7E USEPA Method 7E 12% USEPA Method 6C USEPA Method 6C 12% AS 4323.2 AS 4323.2 7% USEPA Method 29 [£] Envirolab in-house methods Metals-006, Metals-020 Envirolab in-house methods Metals-021 & Metals-022 Envirolab in-house methods Metals-006, Metals-020, 15%	AS 4323.1 NA NA ✓ ISO 10780 ISO 10780 8%, 2%, 7% NA Ektimo 050 Ektimo 050 not specified ✓ NA USEPA Method 3 not specified NA USEPA Method 3A 13% ✓ USEPA Method 10 USEPA Method 10 12% ✓ USEPA Method 7E USEPA Method 7E 12% ✓ USEPA Method 6C USEPA Method 6C 12% ✓ AS 4323.2 AS 4323.2 7% ✓ USEPA Method 29 [£] Envirolab in-house methods Metals-006, Metals-022 Envirolab in-house methods USEPA Method 29 Metals-006, Metals-020, 15% ✓

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

4 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Page: 7 of 10

fravimetric analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Result was reported to Ektimo on 26 August 2022 in report 303458.

Prepared for: Nyrstar Hobart

Definitions 5

The following symbols and abbreviations may be used in this test report:

Volume to volume ratio, dry or wet basis

Approximately < Less than > Greater than

Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water

AS Australian Standard BSP British standard pipe

CARB Californian Air Resources Board

Continuous emission monitoring/Continuous emission monitoring system CEM/CEMS

CTM Conditional test method D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half

> of the particles are retained by the cyclone and half pass through it. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D₅₀ of that cyclone and less than the D₅₀ of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes Disturbance

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA) Department of Environment and Heritage Protection (QLD) DEHP

EPA **Environment Protection Authority** FTIR Fourier transform infra-red

Intersociety Committee, Methods of Air Sampling and Analysis ISC

International Organisation for Standardisation ISO

ITE Individual threshold estimate

When an analyte is not present above the detection limit, the result is assumed to be equal to zero. Lower bound

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required

OΜ Other approved method

ΟU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (µm). PM_{2.5}

Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser PSA

diffraction.

 $R\Delta T\Delta$ Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge oxygen concentration and an absolute pressure of 101,325 kPa.

Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus methane and its derivatives.

USEPA United States Environmental Protection Agency VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or VOC

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

XRD X-ray diffractometry Upper bound

When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit. 95% confidence interval

Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

TM

Page: 8 of 10

Prepared for: Nyrstar Hobart

6 Appendix 1: Site Photo

Figure 1. Start Up Scrubber

7 Appendix 2: Weather Observations

Hobart – 3 August 2022

		Ter	nps	Rain	Max	wind	gust			9:0	0 AM					3:0	0 PM		
Date	Day	Min	Max	Naiii	Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	ווט	km/h	local	°C	%	8 th	ווט	km/h	h hPa	°C	%	8 th	Dii	km/h	hPa
3	We	8.5	16.5	0	NW	59	0:56	11.7	66	7	N	13	993.5	15.1	52		NNW	20	992.4
								Statis	tics fo	r Augu	st 2022								
	Mean	6.1	14.6					9	77	4		15	1012	13.1	60	7		17	1010.5
	Lowest	0.9	9.9	0				3	57	1	Calm		987.9	7.8	38	7	#	6	988.9
H	Highest	10.3	21.1	19	#	81		14.8	97	7	S	46	1029.8	19.7	89	7	NW	37	1027.5
	Total			67															

IDCJDW7021.202208 Prepared at 13:03 UTC on Wednesday 7 September 2022

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Nyrstar Hobart, Lutana
Emission Testing Report
Round 1 – May 2023
Report Number R014539

Prepared for: Nyrstar Hobart

Document Information

Template Version 130223

Client Name: Nyrstar Hobart

Report Number: R014539

Date of Issue: 11 July 2023

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

ilac MRA

Glenn Trenear Client Manager NATA Accredited Laboratory No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart . The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Prepared for: Nyrstar Hobart

Table of Contents

1	E	xecutive Summary	4
	1.1	Background	4
	1.2	Project Objective	4
	1.3	Licence Comparison	6
2	F	Results	7
	2.1	Foreshore A	7
	2.2	Foreshore B	13
	2.3	Parageothite Dryer	19
	2.4	Cadmium Smelter Plant Scrubber Stack	25
	2.5	Copper Sulphate Crystalliser Plant Vent Stack	31
	2.6	Casting Ventilation 1 – V1	37
	2.7	Casting Ventilation 2 – V2	43
	2.8	Roaster Baghouse	49
	2.9	Zinc Oxide Debagging Station	55
	2.10	Anode Casting	61
	2.11	Zinc Plant 1 Baghouse – ZP1	67
	2.12	Zinc Plant 3 Baghouse – ZP3	73
	2.13	MZR Furnace Baghouse	79
	2.14	MZR Dross Stack	85
	2.15	Start-up Scrubber	91
3	T	est Methods	93
4	C	Quality Assurance/Quality Control Information	94
5	[Definitions	94
6	Þ	Appendix 1: Site Photos	95
7	A	Appendix 2: Weather Observations	97

Prepared for: Nyrstar Hobart

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective

The objective of the project was to conduct a monitoring programme to quantify emissions from **15** discharge points to determine compliance with Nyrstar Hobart 's Environmental Licence and meet NPI reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*		
Foreshore A	11 May 2023	Total particulate matter Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs) Metals Sulfur dioxide, sulfur trioxide		
Foreshore B		Total fluoride Nitrogen oxides, nitrous oxide, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)		
Parageothite Dryer	9 May 2023	Total particulate matter		
Cadmium Smelter Plant Scrubber Stack	16 May 2023	Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs)		
Copper Sulphate Stack Crystalliser Plant Vent Stack	9 May 2023	Metals Total fluoride		
Casting Ventilation 1 – V1	8 May 2023	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, Sulfur dio		
Casting Ventilation 2 – V2	8 May 2023	Total & speciated volatile organic compounds (VOCs)		
Roaster Baghouse	16 May 2023	Total particulate matter Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs) Metals Sulfur dioxide, sulfur trioxide Total fluoride Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)		
Zinc Oxide Debagging Station	12 May 2023	Total particulate matter		
Anode Casting	10 May 2023	Fine particulate matter (PM $_{10}$ & PM $_{2.5}$ via particle sizing analysis)		
Zinc Plant 1 Baghouse – ZP1	10 May 2023	Polycyclic aromatic hydrocarbons (PAHs) Metals		
Zinc Plant 3 Baghouse – ZP3	10 May 2023	Total fluoride		
MZR Furnace Baghouse	15 May 2023	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, Sulfur dioxide		
MZR Dross Stack	15 May 2023	Total & speciated volatile organic compounds (VOCs)		
Start-up Scrubber 16 May 202		Total particulate matter Metals Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, Sulfur dioxide		

^{*} Flow rate, velocity, temperature, and moisture were also determined.

Prepared for: Nyrstar Hobart

All results are reported on a dry basis at STP. Plant operating conditions have been noted in the report.

There was insufficient particulate matter collected on the total particulate matter tests that recorded below detection results, subsequently not enough dust was collected to perform accurate particle size analysis. In these instances, the PM_{10} and $PM_{2.5}$ are assumed to be less than the reported detection limit result for the total particulate matter test.

Prepared for: Nyrstar Hobart

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.31
Family A / Tall Con Complete of Charle	Oxides of nitrogen (as NO ₂)	g/m³	2	0.031
Foreshore A (Tail Gas Scrubber) Stack	Particulates	mg/m³	100	<1
	Sulphur dioxide	g/m³	7.2	0.13
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.33
	Oxides of nitrogen (as NO ₂)	g/m³	2	0.039
Foreshore B (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	<2
	Sulphur dioxide	g/m³	7.2	0.039
Anode Casting Plant Exhaust		<u>, , , , , , , , , , , , , , , , , , , </u>		<2
V1 Furnace Stack				<3
V2 Furnace Stack				<4
Zinc Dust Plant Baghouse 1 Stack				<3
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	<2
Cadmium Smelter Plant Scrubber Stack				<3
Copper Sulphate Crystalliser Plant				66
Roaster Baghouse				3.5
Paragoethite Dryer Baghouse				24
Anode Casting Plant Exhaust				≤1.72
V1 Furnace Stack				≤0.021
V2 Furnace Stack				≤0.053
Zinc Dust Plant Baghouse 1 Stack	Metals - Pb, As, Sb, Cd, Hg ⁽¹⁾ mg/m ³	mg/m³	3 5	≤0.137
Zinc Dust Plant Baghouse 3 Stack				≤0.071
Cadmium Smelter Plant Scrubber Stack				≤0.09
Copper Sulphate Crystalliser Plant				≤0.15
Roaster Baghouse				≤0.358
Paragoethite Dryer Baghouse				≤0.13
Anode Casting Plant Exhaust				<0.0008
V1 Furnace Stack	_	, 3	1	<0.0009
V2 Furnace Stack				<0.001
Zinc Dust Plant Baghouse 1 Stack	Andreis III-			<0.0007
Zinc Dust Plant Baghouse 3 Stack Cadmium Smelter Plant Scrubber Stack	Metals - Hg	mg/m³		<0.0005 0.0021
Copper Sulphate Crystalliser Plant	_			0.0021
Roaster Baghouse	_			0.0012
Paragoethite Dryer Baghouse	-			0.0063
Anode Casting Plant Exhaust				0.014
V1 Furnace Stack			1	<0.0008
V2 Furnace Stack				<0.001
Zinc Dust Plant Baghouse 1 Stack				0.0063
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd	mg/m ³		0.0071
Cadmium Smelter Plant Scrubber Stack	1	J		0.034
Copper Sulphate Crystalliser Plant				0.1
Roaster Baghouse				0.026
Paragoethite Dryer Baghouse				0.054
	Sulfur dioxide	g/m³	7.2	<0.006
Start Up Scrubber Stack	Oxides of nitrogen (as NO2)	g/m³	2	0.0058
	Particulates	mg/m ³	100	17

 $^{^{1}}$ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

Prepared for: Nyrstar Hobart

2 **Results**

2.1 Foreshore A

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

the acid stream. Number 1 salt water pump was fault finding (stop/starting) **Process Conditions**

throughout the day.

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.7 (saturated)		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1037 & 1235		
Temperature, °C	16		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/min	1400		
Volumetric flow rate (wet STP), m³/min	1300		
Volumetric flow rate (dry STP), m³/min	1300		
Mass flow rate (wet basis), kg/hour	99000		

Gas Analyser Results	Average
Sampling time	1018 - 1117
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	31 39
Carbon monoxide	<6 <8
	Concentration % v/v
Carbon dioxide	<0.4
Oxyge n	11.3
Samplingtim	1018 - 1117
	Concentration Mass Rate
Nitrous oxide	mg/m³ g/min
Nitrous oxide	<0.004 <0.005

Page: 7 of 98

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

230328

Isokinetic Results	Results
Samplingtime	1050-1232
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	<1 <1
PM10 (PSA)	<1 <1
PM2.5 (PSA)	<1 <1
Sulfur dioxide	130 170
Sulfur trioxide	0.31 0.4
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	97
Gravimetric analysis date (total particulate)	30-05-2023

Total Speciated VOCs	Results
	Concentration Mass Rate mg/m³ g/min
Total	<0.4 <0.5

VOC's C5-C20	Results
Sampling time	1310-1330
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.4 <0.5

$\textbf{(1)} \ Unless \ otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexaneno, Catane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m+ p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane,Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

Mass flow rate (wet basis), kg/hour

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6 (saturated)		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0842 & 1037		
Temperature, °C	15		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/min	1300		
Volumetric flow rate (wet STP), m³/min	1300		
Volumetric flow rate (dry STP), m³/min	1300		

Isokinetic Results	Results	
Samplingtime	0850-1032	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.029 0.038	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	97	

99000

Prepared for: Nyrstar Hobart

230328

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

Mass flow rate (wet basis), kg/hour

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters		
Moisture content, %v/v	1.6	
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)
Gas density at discharge conditions, kg/m³	1.22	
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	1235 & 1430	
Temperature, °C	17	
Velocity at sampling plane, m/s	13	
Volumetric flow rate, actual, m³/min	1400	
Volumetric flow rate (wet STP), m³/min	1400	
Volumetric flow rate (dry STP), m³/min	1400	

100000

Isokinetic Results	Results
Samplingt	me 1245-1427
	Concentration Mass Rate
	mg/m³ g/min
Antimony	<0.004 <0.005
Arsenic	<0.002 <0.002
Beryllium	<0.0005 <0.0006
Cadmium	0.002 0.0026
Chromium	0.0022 0.0029
Cobalt	<0.0008
Copper	<0.0007 <0.001
Lead	0.019 0.026
Manganese	0.017 0.023
Mercury	0.00046 0.00063
Nickel	0.0069 0.0093
Phosphorus	<0.01 <0.02
Selenium	<0.004 <0.005
Zinc	0.09 0.12
Total of Sb, As, Cd, Pb, Hg	≤0.027 ≤0.036
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	110

Page: 10 of 98

Prepared for: Nyrstar Hobart

11/05/2023 Date Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Hobart Location **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1.84 m²

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1430 & 1613		
Temperature, °C	17		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1400		
Volumetric flow rate (wet STP), m³/min	1300		
Volumetric flow rate (dry STP), m³/min	1300		
Mass flow rate (wet basis), kg/hour	100000		

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore A Licence No. 7043-5 Hobart Location **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

230328

Polycyclic Aromatic	Hydrocarbons	Resu	ılts
(PAHs)	Samplingtime	1435 - 1617	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		64000	84000000
2-Methylnaphthale	ene	440	580000
Acenaphthylene		<20	<20000
Acenaphthene		41	54000
Fluorene		<20	<20000
Phenanthrene		260	340000
Anthracene		<20	<20000
Fluoranthene		140	190000
Pyrene		100	130000
Benz(a)anthracene		<20	<20000
Chrysene		48	63000
Benzo(b)fluoranthe	ene	24	31000
Benzo(k)fluoranthe	ene	<20	<20000
Benzo(e)pyrene		<20	<20000
Benzo(a)pyrene		<20	<20000
Perylene		<20	<20000
Indeno(1,2,3-cd)pyr	rene	<20	<20000
Dibenz(ah)anthrac	ene	<20	<20000
Benzo(ghi)perylene	2	<20	<20000
Total 16 PAHs		64000	85000000
Total 19 PAHs		65000	85000000
BaP-TEQ			
Lower Bound		2.8	3700
Middle Bound		16	21000
Upper Bound		30	39000

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	100

Page: 12 of 98

Prepared for: Nyrstar Hobart

2.2 Foreshore B

Date11/05/2023ClientNyrstar HobartReportR014539Stack IDForeshore BLicence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

1530 mm Sampling plane dimensions Sampling plane area 1.84 m² 4" Flange (x2), 150 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Bend 1D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20 Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v 1.6

Gas molecular weight, g/g mole 28.5 (wet) 28.7 (dry)

Gas density at STP, kg/m³ 1.27 (wet) 1.28 (dry)

Gas density at discharge conditions, kg/m³ 1.22

Gas Flow Parameters

Flow measurement time(s) (hhmm)

1237 & 1432

Temperature, °C

17

Velocity at sampling plane, m/s

Volumetric flow rate, actual, m³/min

1400

Volumetric flow rate (wet STP), m³/min

1300

Mass flow rate (wet basis), kg/hour

1237 & 1432

1400

1300

1300

13000

Gas Analyser Results	Average	
Sampling time	1203 - 1302	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	39 52	
Carbon monoxide	<6 <8	
	Concentration % v/v	
Carbon dioxide	<0.4	
Oxygen	11.9	
Sampling time	1203 - 1302	
	Concentration Mass Rate	
Nitrous oxide	mg/m³ g/min	
Nitrous oxide	<0.004 <0.005	

Page: 13 of 98

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Isokinetic Results		Results		
Sampli	ngtime	1245-1427		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<2	<2	
PM10	(PSA)	<2	<2	
PM2.5	(PSA)	<2	<2	
Sulfur dioxide		39	52	
Sulfur trioxide		0.33	0.44	
Isokinetic Sampling Parameters				
Sampling time, min		100		
Isokinetic rate, %		99		
Gravimetric analysis date (total particu	ılate)	30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.6	

VOC's C5-C20		Results	
Sampling time	Samplingtime	1335-1355	
		Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾		<0.4 <0.6	

$\textbf{(1)} \, \textbf{Unless otherwise reported, the following target compounds were found to be below detection:} \\$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane,Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 14 of 98

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

Mass flow rate (wet basis), kg/hour

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1432 & 1623		
Temperature, °C	17		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1400		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		

Isokinetic Results	Results 1435-1617	
Sampling time		
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.04	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	100	

100000

Page: 15 of 98

Prepared for: Nyrstar Hobart

230328

Date 11/05/2023 Client Nyrstar Hobart R014539 Report Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v 1.7 (saturated)
Gas molecular weight, g/g mole 28.5 (wet) 28.6 (dry)
Gas density at STP, kg/m³ 1.27 (wet) 1.28 (dry)
Gas density at discharge conditions, kg/m³ 1.22

Gas Flow Parameters

Flow measurement time(s) (hhmm) 1037 & 1237
Temperature, °C 16
Velocity at sampling plane, m/s 13
Volumetric flow rate, actual, m³/min 1400
Volumetric flow rate (wet STP), m³/min 1300
Mass flow rate (wet basis), kg/hour 100000

Isokinetic Results	Results		
Sampling tir	ne 1050-1232		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.004 <0.005		
Arsenic	<0.002 <0.002		
Beryllium	<0.0005 <0.0007		
Cadmium	0.004 0.0054		
Chromium	0.023 0.031		
Cobalt	0.0008 0.0011		
Copper	<0.0009 <0.001		
Lead	0.033 0.044		
Manganese	0.045 0.061		
Mercury	<0.0008 <0.001		
Nickel	0.083 0.11		
Phosphorus	<0.02 <0.02		
Selenium	<0.004 <0.005		
Zinc	0.18 0.25		
Total of Sb, As, Cd, Pb, Hg	≤0.044 ≤0.059		
Isokinetic Sampling Parameters			
Sampling time, min	100		
Isokinetic rate, %	101		

Page: 16 of 98

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart R014539 Report Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** TAS G Trenear & T Bakas State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.6 (saturated)		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0840 & 1037		
Temperature, °C	15		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/hour	110000		

Prepared for: Nyrstar Hobart

Date 11/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State

Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 101,000 m3/hr of gas through

Process Conditions the acid stream. Number 1 salt water pump was fault finding (stop/starting)

throughout the day.

230328

Polycyclic Aromatic	Hydrocarbons	Resu	ılts	
(PAHs)	Sampling time	0850 - 1032		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		8700	12000000	
2-Methylnaphthale	ene	150	210000	
Acenaphthylene		<10	<20000	
Acenaphthene		100	140000	
Fluorene		68	94000	
Phenanthrene		390	540000	
Anthracene		<10	<20000	
Fluoranthene		55	77000	
Pyrene		58	80000	
Benz(a)anthracene		<10	<20000	
Chrysene		<10	<20000	
Benzo(b)fluoranthe	ene	<10	<20000	
Benzo(k)fluoranthe	ene	<10	<20000	
Benzo(e)pyrene		<10	<20000	
Benzo(a)pyrene		<10	<20000	
Perylene		<10	<20000	
Indeno(1,2,3-cd)pyr	rene	<10	<20000	
Dibenz(ah)anthrac	ene	<10	<20000	
Benzo(ghi)perylene	e	<10	<20000	
Total 16 PAHs		9400	13000000	
Total 19 PAHs		9600	13000000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		13	18000	
Upper Bound		26	37000	

Abbreviations and definitions

Ba P-TEQ Benzo(a) pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	98

Page: 18 of 98

Prepared for: Nyrstar Hobart

2.3 Parageothite Dryer

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDParageothite Dryer

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum.

Sampling Plane Details Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	28		
Gas molecular weight, g/g mole	26.2 (wet)	29.3 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.31 (dry)	
Gas density at discharge conditions, kg/m³	0.89		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1527 & 1635		
Temperature, °C	86		
Velocity at sampling plane, m/s	8.5		
Volumetric flow rate, actual, m³/min	360		
Volumetric flow rate (wet STP), m³/min	280		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/hour	19000		

Gas Analyser Results	Average	
Sampling time	1319 - 1334	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	55 11	
Sulfur dioxide	<6 <1	
Carbon monoxide	<6 <1	
	Concentration % v/v	
Carbon dioxide	3.7	
Oxygen	14.2	

Prepared for: Nyrstar Hobart

Date 9/05/2023 Client Nyrstar Hobart R014539 Report Stack ID Parageothite Dryer Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum. 230328

Isokinetic Results	Results	
Samplingtime	1530-1632	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	24 4.7	
PM10 (PSA	10 2.1	
PM2.5 (PSA	2.3 0.46	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	102	
Gravimetric analysis date (total particulate) 30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.09	

VOC's C5-C20	Sampling time	Results 1535-1555
	3pg	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾		<0.4 <0.09

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

 ${\it Please note, toluene results not reported due to suspected contamination.}$

Page: 20 of 98

Prepared for: Nyrstar Hobart

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDParageothite Dryer

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum.

230328

Sampling Plane Details

Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Test stopped at 1344 due to a process issue which caused the dryer to shut down.

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	26		
Gas molecular weight, g/g mole	26.3 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.88		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309		
Temperature, °C	93		
Velocity at sampling plane, m/s	8.4		
Volumetric flow rate, actual, m³/min	360		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/hour	19000		

Isokinetic Results	Results	
Sampling time	1320-1344	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	13 2.5	
Isokinetic Sampling Parameters		
Sampling time, min	25	
Isokinetic rate, %	102	

Please note: Test stopped at 1344 due to a process issue which caused the dryer to shut down.

Prepared for: Nyrstar Hobart

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDParageothite Dryer

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum.

230328

Sampling Plane Details

Sampling plane dimensions 950 mm 0.709 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	19		
Gas molecular weight, g/g mole	27.1 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.21 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.92		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1527 & 1635		
Temperature, °C	86		
Velocity at sampling plane, m/s	8.3		
Volumetric flow rate, actual, m³/min	350		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	220		
Mass flow rate (wet basis), kg/hour	20000		

Isokinetic Results	Results		
Samplingtime	1530-1632		
	Concentration Mass Rate		
	mg/m³ g/min		
Antimony	<0.007 <0.001		
Arsenic	<0.004 <0.0008		
Beryllium	<0.001 <0.0002		
Cadmium	0.054 0.012		
Chromium	0.061 0.013		
Cobalt	0.0061 0.0013		
Copper	0.0047 0.001		
Lead	0.064 0.014		
Manganese	0.15 0.034		
Mercury	0.0063 0.0014		
Nickel	0.36 0.08		
Phosphorus	<0.05 <0.01		
Selenium	<0.007 <0.001		
Zinc	0.61 0.13		
Total of Sb, As, Cd, Pb, Hg	≤0.13 ≤0.029		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	94		

Prepared for: Nyrstar Hobart

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDParageothite Dryer

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum.

230328

Sampling Plane Details

Sampling plane dimensions 950 mm Sampling plane area 0.709 m² Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Test stopped at 1344 due to a process issue which caused the dryer to shut down.

Isokinetic rate for one or more tests is outside the criteria (90-110%) The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	28		
Gas molecular weight, g/g mole	26.1 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.87		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309		
Temperature, °C	93		
Velocity at sampling plane, m/s	8.3		
Volumetric flow rate, actual, m³/min	360		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	190		
Mass flow rate (wet basis), kg/hour	19000		

Prepared for: Nyrstar Hobart

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDParageothite DryerLicence No.7043-5LocationHobart

Licence No.7043-5LocationHobaEktimo StaffG Trenear & T BakasStateTAS

 Process Conditions
 7 m3/hr of dirt and 1.75 m3/hr of bypass flow into the drum.
 230328

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1320 - 1344		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		160000	3000000	
2-Methylnaphthale	ene	1000	200000	
Acenaphthylene		<60	<10000	
Acenaphthene		<60	<10000	
Fluorene		80	15000	
Phenanthrene		1800	350000	
Anthracene		290	57000	
Fluoranthene		2700	520000	
Pyrene		730	140000	
Benz(a)anthracene		89	17000	
Chrysene		460	89000	
Benzo(b)fluoranth	ene	<60	<10000	
Benzo(k)fluoranthe	ene	<60	<10000	
Benzo(e)pyrene		<60	<10000	
Benzo(a)pyrene		<60	<10000	
Perylene		<60	<10000	
Indeno(1,2,3-cd)py	rene	<60	<10000	
Dibenz(ah)anthrac	ene	<60	<10000	
Benzo(ghi)perylen	e	<60	<10000	
Total 16 PAHs		160000	32000000	
Total 19 PAHs		160000	32000000	
BaP-TEQ				
Lower Bound		13	2600	
Middle Bound		65	13000	
Upper Bound		120	23000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	25
Isokinetic rate, %	97

Please note: Test stopped at 1344 due to a process issue which caused the dryer to shut down.

Page: 24 of 98

Prepared for: Nyrstar Hobart

2.4 Cadmium Smelter Plant Scrubber Stack

 Date
 16/05/2023
 Client
 Nyrstar Hobart

 Report
 R014539
 Stack ID
 Cadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation.

230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

O.173 m²

4" BSP (x2), 85 mm

Vertical Circular

Bend 1 D

Change in diameter 2 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1535 & 1650		
Temperature, °C	22		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	140		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	11000		

Gas Analyser Results	Average		
Sampling time	1454 - 1553		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.6		
Sulfur dioxide	<6 <0.8		
Carbon monoxide	<6 <0.8		
	Concentration % v/v		
Carbon dioxide	<0.4		
Oxygen	20.8		

Prepared for: Nyrstar Hobart

Date 16/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Cadmium Smelter Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Fume extraction while furnace in operation. 230328

Isokinetic Results		Results	
	Sampling time	1540-3	1642
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<3	<0.4
PM10	(PSA)	<3	<0.4
PM2.5	(PSA)	<3	<0.4
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		95	5
Gravimetric analysis date (tota	al particulate)	30-05-	2023

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.06	

VOC's C5-C20	Samplingtime	Results 1550-1610
		Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾		<0.4 <0.06

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Page: 26 of 98

Prepared for: Nyrstar Hobart

 Date
 16/05/2023
 Client
 Nyrstar Hobart

 Report
 R014539
 Stack ID
 Cadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation.

230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

470 mm

Vertical Circular

Bend 1 D

Change in diameter 2 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1422 & 1535		
Temperature, °C	23		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	140		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Isokinetic Results	Results
Sampling time	1430-1532
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	0.083 0.011
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	98

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDCadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation.

230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

O.173 m²

4" BSP (x2), 85 mm

Vertical Circular

Bend 1 D

Change in diameter 2 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1422 & 1535		
Temperature, °C	23		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	140		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Isokinetic Results	Results
Samplingtime	1430-1532
	Concentration Mass Rate mg/m³ g/min
Antimony	<0.007 <0.0009
Arsenic	<0.003 <0.0004
Beryllium	<0.0009 <0.0001
Cadmium	0.034 0.0045
Chromium	<0.001 <0.0001
Cobalt	<0.001 <0.0002
Copper	0.0013 0.00017
Lead	0.047 0.0062
Manganese	0.0038 0.0005
Mercury	0.0021 0.00027
Nickel	<0.002 <0.0002
Phosphorus	<0.03 <0.004
Selenium	<0.007 <0.0009
Zinc	0.64 0.085
Total of Sb, As, Cd, Pb, Hg	≤0.093 ≤0.012
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	98

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDCadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation.

230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.173 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

470 mm

Vertical Circular

Bend 1 D

Change in diameter 2 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1535 & 1650		
Temperature, °C	22		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	140		
Volumetric flow rate (dry STP), m³/min	130		

11000

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDCadmium SmelterLicence No.7043-5LocationHobart

Ektimo Staff G Trenear & T Bakas State TAS

 Process Conditions
 Fume extraction while furnace in operation.
 2300

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1540 -	1642	
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		6700	900000	
2-Methylnaphthale	ene	130	17000	
Acenaphthylene		<20	<3000	
Acenaphthene		44	5900	
Fluorene		<20	<3000	
Phenanthrene		150	21000	
Anthracene		7100	950000	
Fluoranthene		120	16000	
Pyrene		68	9200	
Benz(a)anthracene		<20	<3000	
Chrysene		<20	<3000	
Benzo(b)fluoranthe	ene	<20	<3000	
Benzo(k)fluoranthe	ene	<20	<3000	
Benzo(e)pyrene		<20	<3000	
Benzo(a)pyrene		<20	<3000	
Perylene		<20	<3000	
Indeno(1,2,3-cd)py	rene	<20	<3000	
Dibenz(ah)anthrac	ene	<20	<3000	
Benzo(ghi)perylend		<20	<3000	
Total 16 PAHs		14000	1900000	
Total 19 PAHs		14000	1900000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		21	2900	
Upper Bound		43	5700	

Abbreviations and definitions

Ba P-TEQ Benzo(a) pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	101

Page: 30 of 98

Prepared for: Nyrstar Hobart

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date9/05/2023ClientNyrstar HobartReportR014539Stack IDCopper Sulphate Stack

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into

Dryer - 40%

Sampling Plane Details

Sampling plane dimensions 500 mm 0.196 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 100 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Bend 4 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	8.1 (saturated)		
Gas molecular weight, g/g mole	28.1 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.26 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.06		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1006 & 1127		
Temperature, °C	50		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	190		
Volumetric flow rate (wet STP), m³/min	160		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/hour	12000		

Gas Analyser Results		Aver	age	
	Samplingtime	1011 -	1110	
		Concentration	Mass Rate	
Combustion Gases		mg/m³	g/min	
Nitrogen oxides (as NO ₂)		<4	<0.6	
Sulfur dioxide		<6	<0.8	
Carbon monoxide		<6	<0.9	
		Concentration		
		% v	/v	
Carbon dioxide		<0.4		
Oxygen		20	9	

Prepared for: Nyrstar Hobart

Date 9/05/2023 Client Nyrstar Hobart

ReportR014539Stack IDCopper Sulphate Stack

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions

Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into

Dryer - 40% 2303.

Isokinetic Results		Results	
	Sampling time	1020-1122	
		Concentration Mass Rate mg/m³ g/min	
Total particulate matter		66 9.9	
PM10	(PSA)	8.2 1.2	
PM2.5	(PSA)	1.7 0.25	
Isokinetic Sampling Parame	eters		
Sampling time, min		60	
Isokinetic rate, %		100	
Gravimetric analysis dat	e (total particulate)	30-05-2023	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.06	

VOC's C5-C20	Sampling time	Res ults 1040-1100	
		Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾		<0.4 <0.06	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m+ p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, Deta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tidecane, Tetradecane, Residuals as Toluene

Page: 32 of 98

Prepared for: Nyrstar Hobart

Date 9/05/2023 Client Nyrstar Hobart

R014539 Report Stack ID Copper Sulphate Stack

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into **Process Conditions**

Dryer - 40%

230328

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Vertical Circular Duct orientation & shape Exit 2 D Downstream disturbance Upstream disturbance Bend 4D No. traverses & points sampled 2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

Stack Parameters

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

ı	Stack i arameters	
	Moisture content, %v/v	10 (saturated)
	Gas molecular weight, g/g mole	27.8 (wet)
	Gas density at STP, kg/m³	1.24 (wet)

29.0 (dry) 1.29 (dry) t) Gas density at discharge conditions, kg/m³ 1.06

Gas Flow Parameters Flow measurement time(s) (hhmm) 0842 & 1006 Temperature, °C 48 Velocity at sampling plane, m/s 17 Volumetric flow rate, actual, m³/min 200 Volumetric flow rate (wet STP), m³/min 170 Volumetric flow rate (dry STP), m³/min 150 Mass flow rate (wet basis), kg/hour 13000

Isokinetic Results	Results	
Sampling time	0900-1002	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	4.9 0.73	
Isokinetic Sampling Parameters		
Sampling time, min 60		
Isokinetic rate, %	101	

Prepared for: Nyrstar Hobart

230328

Date 9/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Copper Sulphate Stack

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions

Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into

Dryer - 40%

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Duct orientation & shape Vertical Circular Exit 2 D Downstream disturbance Bend 4 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v	8.1 (saturated)	
Gas molecular weight, g/g mole	28.1 (wet)	29.0 (dry)
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)
Gas density at discharge conditions, kg/m³	1.06	

Gas Flow Parameters

Flow measurement time(s) (hhmm)	1006 & 1127
Temperature, °C	50
Velocity at sampling plane, m/s	16
Volumetric flow rate, actual, m³/min	190
Volumetric flow rate (wet STP), m³/min	160
Volumetric flow rate (dry STP), m³/min	150
Mass flow rate (wet basis), kg/hour	12000

Isokinetic Results	Results	
Samplingtime	1020-1122	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.007 <0.001	
Arsenic	<0.003 <0.0005	
Beryllium	<0.0009 <0.0001	
Cadmium	0.1 0.015	
Chromium	0.056 0.0084	
Cobalt	0.007 0.001	
Copper	0.029 0.0043	
Lead	0.032 0.0047	
Manganese	0.17 0.025	
Mercury	0.012 0.0018	
Nickel	0.15 0.022	
Phosphorus	0.11 0.016	
Selenium	0.011 0.0016	
Zinc	1.5 0.22	
Total of Sb, As, Cd, Pb, Hg	≤0.16 ≤0.023	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	96	

Prepared for: Nyrstar Hobart

Date 9/05/2023 Client Nyrstar Hobart

R014539 Report Stack ID Copper Sulphate Stack

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into **Process Conditions**

Dryer - 40%

230328

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Vertical Circular Duct orientation & shape Exit 2 D Downstream disturbance Upstream disturbance Bend 4D 2 12 No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters		
Moisture content,		

8.1 (saturated) %v/v Gas molecular weight, g/g mole 28.1 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.25 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.07

Gas Flow Parameters

Flow measurement time(s) (hhmm) 0842 & 1006 Temperature, °C 48 Velocity at sampling plane, m/s 17 Volumetric flow rate, actual, m³/min 200 Volumetric flow rate (wet STP), m³/min 170 Volumetric flow rate (dry STP), m³/min 150 Mass flow rate (wet basis), kg/hour 13000

Page: 35 of 98

Prepared for: Nyrstar Hobart

Polycyclic Aromatic Hydrocarbons

(PAHs)

Naphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Fluoranthene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(ah)anthracene

Benzo(ghi)perylene

Total 16 PAHs

Total 19 PAHs

Lower Bound

Middle Bound

Upper Bound

BaP-TEQ

Benzo(e)pyrene

Benzo(a)pyrene

Anthracene

Pyrene

Chrysene

Perylene

Fluorene

2-Methylnaphthalene

230328

Date 9/05/2023 Client Nyrstar Hobart

R014539 Report Stack ID Copper Sulphate Stack

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Production rate - 10 tonnes/day, Dryer Outlet Temperature - 111 deg C, Feed rate into **Process Conditions**

Dryer - 40%

Sampling time

Results 0900 - 1002 Concentration Mass Rate ng/m³ ng/min 11000 1700000 260 41000 <4000 <20 440 67000 70000 460 3700 560000 880 140000 1700 260000 730 110000 31 4800 320 49000 95 15000 <4000 <20 <20 <4000 <20 <4000 <20 <4000 <20 <4000 <4000 <20 <20 <4000 19000 3000000 20000 3000000

2400

5300

8100

16

34

53

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Defines values reported below detection as equal to zero. Lower Bound

Middle Bound Defines values reported below detection are equal to half the detection limit. Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	101

Page: 36 of 98

Prepared for: Nyrstar Hobart

2.6 Casting Ventilation 1 – V1

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 1 - V1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

230328

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v

Mass flow rate (wet basis), kg/hour

Gas molecular weight, g/g mole 28.8 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.17 **Gas Flow Parameters** 1153 & 1304 Flow measurement time(s) (hhmm) 26 Temperature, °C 26 Velocity at sampling plane, m/s Volumetric flow rate, actual, m³/min 500 Volumetric flow rate (wet STP), m³/min 460 Volumetric flow rate (dry STP), m³/min 450

35000

2.2

Gas Analyser Results	Average	
Samplingtime	1342 - 1441	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <2	
Sulfur dioxide	<6 <3	
Carbon monoxide	<6 <3	
	Concentration % v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Page: 37 of 98

Prepared for: Nyrstar Hobart

Client Date 8/05/2023 Nyrstar Hobart R014539 Report Stack ID Casting Ventilation 1 - V1 Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 230328

Isokinetic Results	Results		
Si	Sampling time 1200-1300		1300
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<3	<2
PM10	(PSA)	<3	<2
PM2.5	(PSA)	<3	<2
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		108	
Gravimetric analysis date (total pa	rticulate)	30-05-	-2023

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.2	

VOC's C5-C20	mplingtime	Results 1410-1430
		Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾		<0.4 <0.2

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 38 of 98

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 1 - V1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Vertical Circular Duct orientation & shape Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Non-conforming Sample plane conformance to AS 4323.1

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1523 & 1627		
Temperature, °C	26		
Velocity at sampling plane, m/s	26		
Volumetric flow rate, actual, m³/min	490		
Volumetric flow rate (wet STP), m³/min	450		
Volumetric flow rate (dry STP), m³/min	440		
Mass flow rate (wet basis), kg/hour	35000		

Isokinetic Results	Results
Sampling time	1525-1625
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	4.9 2.2
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	109

Page: 39 of 98

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 1 - V1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Mass flow rate (wet basis), kg/hour

Sampling plane dimensions 635 mm Sampling plane area $0.317 \; m^2$ Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1414 & 1523		
Temperature, °C	26		
Velocity at sampling plane, m/s	26		
Volumetric flow rate, actual, m³/min	500		
Volumetric flow rate (wet STP), m³/min	450		
Volumetric flow rate (dry STP), m ³ /min	440		

35000

Isokinetic Results	Resu	llts
Samplingtime	1418-	1518
	Concentration mg/m³	Mass Rate g/min
Antimony	<0.008	<0.004
Arsenic	<0.004	<0.002
Beryllium	<0.001	<0.0005
Cadmium	<0.0008	<0.0004
Chromium	0.079	0.035
Cobalt	0.0016	0.00072
Copper	<0.002	<0.0007
Lead	0.0078	0.0034
Manganese	0.012	0.0051
Mercury	<0.0009	<0.0004
Nickel	0.091	0.04
Phosphorus	0.041	0.018
Selenium	<0.008	<0.004
Zinc	1.8	0.79
Total of Sb, As, Cd, Pb, Hg	≤0.022	≤0.0095
Isokinetic Sampling Parameters		
Sampling time, min	60)
Isokinetic rate, %	101	

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 1 - V1

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area $0.317 \, \text{m}^2$ Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Exit 2 D Downstream disturbance Centrifugal fan 2D Upstream disturbance No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

2.1 Moisture content, %v/v Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.16

Gas Flow Parameters

Flow measurement time(s) (hhmm) 1304 & 1414 Temperature, °C 26 Velocity at sampling plane, m/s 26 Volumetric flow rate, actual, m³/min 500 Volumetric flow rate (wet STP), m³/min 450 Volumetric flow rate (dry STP), m³/min 440 Mass flow rate (wet basis), kg/hour 35000

Prepared for: Nyrstar Hobart

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 1 - V1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation. 230328

Polycyclic Aromati	c Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1310 - 1410		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		11000	4800000	
2-Methylnaphthale	ene	240	110000	
Acenaphthylene		<30	<10000	
Acenaphthene		670	300000	
Fluorene		560	250000	
Phenanthrene		2700	1200000	
Anthracene		4600	2100000	
Fluoranthene		720	320000	
Pyrene		590	260000	
Benz(a)anthracene	2	300	140000	
Chrysene		1200	530000	
Benzo(b)fluoranth	ene	150	65000	
Benzo(k)fluoranth	ene	82	36000	
Benzo(e)pyrene		100	46000	
Benzo(a)pyrene		<30	<10000	
Perylene		<30	<10000	
Indeno(1,2,3-cd)py	rene	<30	<10000	
Dibenz(ah)anthrad	cene	<30	<10000	
Benzo(ghi)perylen	e	<30	<10000	
Total 16 PAHs		23000	10000000	
Total 19 PAHs		23000	10000000	
BaP-TEQ				
Lower Bound		65	29000	
Middle Bound		89	40000	
Upper Bound		110	50000	

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	60	
Isokinetic rate, %	98	

Prepared for: Nyrstar Hobart

2.7 Casting Ventilation 2 – V2

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 595 mm Sampling plane area 0.278 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Charle	D	
Stack	Param	eters

Moisture content, %v/v

Mass flow rate (wet basis), kg/hour

Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.10 **Gas Flow Parameters** 1305 & 1413 Flow measurement time(s) (hhmm) Temperature, °C 42 28 Velocity at sampling plane, m/s Volumetric flow rate, actual, m³/min 470 Volumetric flow rate (wet STP), m³/min 400 Volumetric flow rate (dry STP), m³/min 390

31000

3.2

Gas Analyser Results		Average	
	Sampling time	1452 - 1	551
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<2
Sulfur dioxide		<6	<2
Carbon monoxide		<6	<2
		Concentr % v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Prepared for: Nyrstar Hobart

Date 8/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Casting Ventilation 2 - V2 Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Casting area in normal operation. 230328

Isokinetic Results		Results		
Sa	mplingtime	1310-1410		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<4	<1	
PM10	(PSA)	<4	<1	
PM2.5	(PSA)	<4	<1	
Isokinetic Sampling Parameters				
Sampling time, min		60)	
Isokinetic rate, %	104		4	
Gravimetric analysis date (total par	ticulate)	30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	0.3 0.12	

VOC's C5-C20	Results	
Sampling time	1434-1501	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.1	
Residuals as Toluene	0.3 0.12	

$\textbf{(1)} \, \textbf{Unless otherwise reported, the following target compounds were found to be below detection:} \\$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

Please note, toluene results not reported due to suspected contamination.

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 595 mm Sampling plane area 0.278 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2 D No. traverses & points sampled 1 6 Non-conforming Sample plane conformance to AS 4323.1

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1521 & 1629		
Temperature, °C	41		
Velocity at sampling plane, m/s	28		
Volumetric flow rate, actual, m³/min	460		
Volumetric flow rate (wet STP), m³/min	400		
Volumetric flow rate (dry STP), m³/min	390		
Mass flow rate (wet basis), kg/hour	31000		

Isokinetic Results	Results	
Sampling time	1525-1625	
Total fluoride (as HF)	Concentration Mass Rate mg/m³ g/min 0.29 0.11	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	105	

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Mass flow rate (wet basis), kg/hour

Sampling plane dimensions 595 mm Sampling plane area $0.278 \; m^2$ Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	3		
Gas molecular weight, g/g mole	28.6 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1152 & 1303		
Temperature, °C	41		
Velocity at sampling plane, m/s	28		
Volumetric flow rate, actual, m³/min	470		
Volumetric flow rate (wet STP), m³/min	410		
Volumetric flow rate (dry STP), m³/min	400		

31000

Isokinetic Results	Results		
Sampling time	1200-1300		
	Concentration mg/m³	Mass Rate g/min	
Antimony	<0.008	<0.003	
Arsenic	<0.004	<0.001	
Beryllium	<0.001	<0.0004	
Cadmium	<0.001	<0.0005	
Chromium	0.0021	0.00082	
Cobalt	<0.001	<0.0005	
Copper	<0.001	<0.0005	
Lead	0.039	0.015	
Manganese	0.051	0.02	
Mercury	<0.001	<0.0004	
Nickel	0.01	0.0041	
Phosphorus	0.067	0.027	
Selenium	<0.008	<0.003	
Zinc	0.91	0.36	
Total of Sb, As, Cd, Pb, Hg	≤0.053	≤0.021	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	100		

Prepared for: Nyrstar Hobart

230328

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 595 mm Sampling plane area 0.278 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Vertical Circular Duct orientation & shape Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

Mass flow rate (wet basis), kg/hour

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2.9		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.10		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1415 & 1522		
Temperature, °C	42		
Velocity at sampling plane, m/s	28		
Volumetric flow rate, actual, m³/min	470		
Volumetric flow rate (wet STP), m³/min	400		
Volumetric flow rate (dry STP), m³/min	390		

31000

Prepared for: Nyrstar Hobart

Date 8/05/2023 Client Nyrstar Hobart

Report R014539 **Stack ID** Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation. 230328

Polycyclic Aromatic	Hydrocarbons	Resu	lts
(PAHs)	Sampling time	1418 - 1518	
		Concentration ng/m³	Mass Rate ng/min
Naphthalene		38000	15000000
2-Methylnaphthaler	ne	3000	1200000
Acenaphthylene		460	180000
Acenaphthene		760	300000
Fluorene		910	350000
Phenanthrene		4900	1900000
Anthracene		590	230000
Fluoranthene		1000	400000
Pyrene		730	290000
Benz(a)anthracene		140	56000
Chrysene		530	210000
Benzo(b)fluoranthe	ne	100	39000
Benzo(k)fluoranther	ne	54	21000
Benzo(e)pyrene		91	35000
Benzo(a)pyrene		<30	<10000
Perylene		<30	<10000
Indeno(1,2,3-cd)pyre	ene	<30	<10000
Dibenz(ah)anthrace	ne	<30	<10000
Benzo(ghi)perylene		<30	<10000
Total 16 PAHs		48000	19000000
Total 19 PAHs		52000	20000000
BaP-TEQ			
Lower Bound		35	14000
Middle Bound		59	23000
Upper Bound		83	32000

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	60	
Isokinetic rate, %	102	

Prepared for: Nyrstar Hobart

2.8 Roaster Baghouse

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters Moisture content, %v/v 0.9 Gas molecular weight, g/g mole 28.9 (wet) 29.0 (dry) 1.29 (wet) Gas density at STP, kg/m³ 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.19 **Gas Flow Parameters** 1215 & 1341 Flow measurement time(s) (hhmm) Temperature, °C 23 Velocity at sampling plane, m/s 5.7 Volumetric flow rate, actual, m³/min 40 Volumetric flow rate (wet STP), m³/min 37 Volumetric flow rate (dry STP), m³/min 36 Mass flow rate (wet basis), kg/hour 2900

Gas Analyser Results		Average	
	Sampling time	1112 - 1211	
Combustion Gases		Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO₂)		<4 <0.1	
Carbon monoxide		<6 <0.2	
		Concentration % v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on. 230328

Isokinetic Results	Results		
Sampling time	1230-1336		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	3.5 0.13		
PM10 (PSA	2.1 0.076		
PM2.5 (PSA	0.6 0.022		
Sulfur dioxide	7.2 0.26		
Sulfur trioxide	0.93 0.034		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	96		
Gravimetric analysis date (total particulate)	30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.02	

VOC's C5-C20		Results	
	Samplingtime	1240-1300	
		Concentration mg/m³	Mass Rate g/min
Detection limit ⁽¹⁾		<0.4	<0.02

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, m+ p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane,Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Todecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Page: 50 of 98

Prepared for: Nyrstar Hobart

230328

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on.

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	0.8		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1101 & 1215		
Temperature, °C	22		
Velocity at sampling plane, m/s	5.3		
Volumetric flow rate, actual, m³/min	37		
Volumetric flow rate (wet STP), m³/min	34		
Volumetric flow rate (dry STP), m³/min	34		
Mass flow rate (wet basis), kg/hour	2700		

Isokinetic Results	Results	
Samplingtime	1105-1211	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.05 <0.002	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	101	

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on. 230328

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area $0.116 \ m^2$ 4" BSP (x2), 105 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	0.8		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19	,	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1101 & 1215		
Temperature, °C	22		
Velocity at sampling plane, m/s	5.3		
Volumetric flow rate, actual, m³/min	37		
Volumetric flow rate (wet STP), m³/min	34		
Volumetric flow rate (dry STP), m³/min	34		
Mass flow rate (wet basis), kg/hour	2700		

Isokinetic Results	Results		
Sampling time	1105-1211		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.006 <0.0002		
Arsenic	0.0049 0.00017		
Beryllium	<0.0008 <0.00003		
Cadmium	0.026 0.00087		
Chromium	<0.001 <0.00003		
Cobalt	<0.001 <0.00003		
Copper	0.021 0.00071		
Lead	0.32 0.011		
Manganese	0.038 0.0013		
Mercury	0.0014 0.000046		
Nickel	0.0018 0.000062		
Phosphorus	<0.02 <0.0008		
Selenium	<0.006 <0.0002		
Zinc	4.4 0.15		
Total of Sb, As, Cd, Pb, Hg	≤0.36 ≤0.012		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	98		

Prepared for: Nyrstar Hobart

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on. 230328

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	0.9		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1215 & 1341		
Temperature, °C	23		
Velocity at sampling plane, m/s	5.7		
Volumetric flow rate, actual, m³/min	40		
Volumetric flow rate (wet STP), m³/min	37		
Volumetric flow rate (dry STP), m³/min	37		
Mass flow rate (wet basis), kg/hour	2800		

Prepared for: Nyrstar Hobart

230328

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDRoaster Baghouse

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 6 - 48 t/hr, Roaster 5 - 0 t/hr (Conveyor all in operation), no fumes were on.

Polycyclic Aromatic Hydrocarbons		Results		
(PAHs)	Samplingtime	1230 - 1336		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		5500	200000	
2-Methylnaphthaler	ne	190	6800	
Acenaphthylene		<20	<800	
Acenaphthene		150	5600	
Fluorene		64	2300	
Phenanthrene		230	8400	
Anthracene		<20	<800	
Fluoranthene		160	6000	
Pyrene		94	3400	
Benz(a)anthracene		<20	<800	
Chrysene		<20	<800	
Benzo(b)fluoranthe	ne	<20	<800	
Benzo(k)fluoranthei	ne	<20	<800	
Benzo(e)pyrene		58	2100	
Benzo(a)pyrene		<20	<800	
Perylene		<20	<800	
Indeno(1,2,3-cd)pyre	ene	<20	<800	
Dibenz(ah)anthrace	ene	<20	<800	
Benzo(ghi)perylene		<20	<800	
Total 16 PAHs		6200	230000	
Total 19 PAHs		6400	240000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		20	730	
Upper Bound		40	1500	

Abbreviations and definitions

Ba P-TEQ Benzo(a) pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	95

Page: 54 of 98

Prepared for: Nyrstar Hobart

2.9 Zinc Oxide Debagging Station

Date12/05/2023ClientNyrstar Hobart

Report R014539 Stack ID Zinc Oxide Fume Debagging Station

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume unloading for duration of test.

Sampling Plane Details Sampling plane dimensions 250 mm Sampling plane area 0.0491 m² 3" Flange (x4) Sampling port size, number Vertical Circular Duct orientation & shape Downstream disturbance Cowl >2 D Bend >6 D Upstream disturbance 2 4 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters Moisture content, %v/v Gas molecular weight, g/g mole 28.8 (wet) 29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.21 Gas Flow Parameters 0945 Flow measurement time(s) (hhmm) Temperature, °C 21 Velocity at sampling plane, m/s 8.6 Volumetric flow rate, actual, m³/min 25 Volumetric flow rate (wet STP), m³/min 24 Volumetric flow rate (dry STP), m³/min 23 Mass flow rate (wet basis), kg/hour 1800

Gas Analyser Results		Average	
Sam	nplingtime	0942 -	1021
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.1
Carbon monoxide		<6	<0.1
		Concent % v	
Carbon dioxide		<0.4	
Oxyge n		20.9	

Prepared for: Nyrstar Hobart

12/05/2023 Client Date Nyrstar Hobart R014539 Report Stack ID Zinc Oxide Fume Debagging Station Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State

Process Conditions Fume unloading for duration of test. 230328

Isokinetic Results		Results		
Sampl	ingtime	0945-1026		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<4	<0.08	
PM10	(PSA)	<4	<0.08	
PM2.5	(PSA)	<4	<0.08	
Sulfur dioxide		1.8	0.043	
Sulfur trioxide		0.12	0.0028	
Isokinetic Sampling Parameters				
Sampling time, min		40		
Isokinetic rate, %		110		
Gravimetric analysis date (total partic	ulate)	te) 30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.2 <0.005	

VOC's C5-C20	Samplingtime	Results 0950-1026
		Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾		<0.2 <0.005

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, m+ p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane,Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 56 of 98

Prepared for: Nyrstar Hobart

Date 12/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test. 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0491 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.9 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0820		
Temperature, °C	21		
Velocity at sampling plane, m/s	8.6		
Volumetric flow rate, actual, m³/min	25		
Volumetric flow rate (wet STP), m³/min	24		
Volumetric flow rate (dry STP), m³/min	23		
Mass flow rate (wet basis), kg/hour	1800		

Isokinetic Results	Results	
Sampling time	0820-0847	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.08 <0.002	
Isokinetic Sampling Parameters		
Sampling time, min	28	
Isokinetic rate, %	94	

Prepared for: Nyrstar Hobart

Date 12/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Oxide Fume Debagging Station

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume unloading for duration of test. 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0491 m²

Sampling port size, number

3" Flange (x4)

Duct orientation & shape

Vertical Circular

Downstream disturbance

Cowl >2 D

Upstream disturbance

Bend >6 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.9 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0820		
Temperature, °C	21		
Velocity at sampling plane, m/s	8.6		
Volumetric flow rate, actual, m³/min	25		
Volumetric flow rate (wet STP), m³/min	24		
Volumetric flow rate (dry STP), m³/min	23		
Mass flow rate (wet basis), kg/hour	1800		

Isokinetic Results	Results		
Samplingtime	0820-0847		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.01 <0.0003		
Arsenic	<0.006 <0.0001		
Beryllium	<0.002 <0.00004		
Cadmium	0.0095 0.00022		
Chromium	<0.003 <0.00006		
Cobalt	<0.002 <0.00005		
Copper	<0.002 <0.00005		
Lead	0.099 0.0023		
Manganese	0.096 0.0023		
Mercury	<0.001 <0.00003		
Nickel	0.013 0.0003		
Phosphorus	<0.05 <0.001		
Selenium	<0.01 <0.0003		
Zinc	0.58 0.014		
Total of Sb, As, Cd, Pb, Hg	≤0.13 ≤0.003		
Isokinetic Sampling Parameters			
Sampling time, min	28		
Isokinetic rate, %	94		

Prepared for: Nyrstar Hobart

Date 12/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zink Oxide Fume Debagging Station

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume unloading for duration of test. 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0491 m²

Sampling port size, number

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.9 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0945		
Temperature, °C	21		
Velocity at sampling plane, m/s	8.6		
Volumetric flow rate, actual, m³/min	25		
Volumetric flow rate (wet STP), m³/min	24		
Volumetric flow rate (dry STP), m³/min	23		
Mass flow rate (wet basis), kg/hour	1800		

Prepared for: Nyrstar Hobart

Date 12/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zink Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test. 230328

Polycyclic Aromatic I	Hydrocarbons	Resu	lts	
(PAHs)	Sampling time	0945 -	1026	
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		8400	200000	
2-Methylnaphthalen	e	170	3900	
Acenaphthylene		<30	<700	
Acenaphthene		55	1300	
Fluorene		<30	<700	
Phenanthrene		150	3400	
Anthracene		<30	<700	
Fluoranthene		88	2100	
Pyrene		50	1200	
Benz(a)anthracene		<30	<700	
Chrysene		<30	<700	
Benzo(b)fluoranther	ne	<30	<700	
Benzo(k)fluoranther	ne	<30	<700	
Benzo(e)pyrene		<30	<700	
Benzo(a)pyrene		<30	<700	
Perylene		<30	<700	
Indeno(1,2,3-cd)pyre	ne	<30	<700	
Dibenz(ah)anthrace	ne	<30	<700	
Benzo(ghi)perylene		<30	<700	
Total 16 PAHs		8700	200000	
Total 19 PAHs		8900	210000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		28	640	
Upper Bound		55	1300	

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	40
Isokinetic rate, %	107

Page: 60 of 98

Prepared for: Nyrstar Hobart

2.10 Anode Casting

Date 10/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters

Moisture content, %v/v 2

Gas molecular weight, g/g mole 28.8 (wet) 29.0 (dry)

Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry)

Gas density at discharge conditions, kg/m³ 1.21

Gas Flow Parameters

Flow measurement time(s) (hhmm)

7 Temperature, °C

Velocity at sampling plane, m/s

Volumetric flow rate, actual, m³/min

Volumetric flow rate (wet STP), m³/min

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/hour

0933 & 1042

20

57

Volumetric flow rate, actual, m³/min

53

Volumetric flow rate (dry STP), m³/min

4100

Gas Analyser Results	Average		
Sampling time	0940 - 1039		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.2		
Sulfur dioxide	<6 <0.3		
Carbon monoxide	<6 <0.3		
	Concentration % v/v		
Carbon dioxide	<0.4		
Oxyge n	20.9		

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart R014539 Report Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Casting area in normal operation. 230328

Isokinetic Results		Results	
	Samplingtime	0940-1040	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<2	<0.1
PM10	(PSA)	<2	<0.1
PM2.5	(PSA)	<2	<0.1
Isokinetic Sampling Parameters			
Sampling time, min		60	
Isokinetic rate, %		100	
Gravimetric analysis date (total particulate)		30-05-2023	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.02	

VOC's C5-C20		Results	
	Samplingtime	0942-1002	
		Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾		<0.4 <0.02	

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 62 of 98

Prepared for: Nyrstar Hobart

Client Date 10/05/2023 Nyrstar Hobart R014539 Report Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 230328

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Vertical Circular Duct orientation & shape Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2 D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

Mass flow rate (wet basis), kg/hour

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0818 & 0933		
Temperature, °C	19		
Velocity at sampling plane, m/s	5.8		
Volumetric flow rate, actual, m³/min	55		
Volumetric flow rate (wet STP), m³/min	52		
Volumetric flow rate (dry STP), m³/min	51		

Isokinetic Results	Results	
Sampling time	0830-0930	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.12 0.006	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate. %	100	

4000

Page: 63 of 98

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 230328

Sampling Plane Details

450 mm Sampling plane dimensions Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Vertical Circular Duct orientation & shape Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0933 & 1042		
Temperature, °C	20		
Velocity at sampling plane, m/s	6		
Volumetric flow rate, actual, m³/min	57		
Volumetric flow rate (wet STP), m³/min	53		
Volumetric flow rate (dry STP), m³/min	52		
Mass flow rate (wet basis), kg/hour	4100		

Isokinetic Results	Results		
Sampling time	0940-1040		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.006 <0.0003		
Arsenic	<0.003 <0.0001		
Beryllium	<0.0007 <0.00004		
Cadmium	0.014 0.00074		
Chromium	0.0041 0.00021		
Cobalt	0.0012 0.000063		
Copper	0.0056 0.00029		
Lead	1.7 0.087		
Manganese	0.14 0.0072		
Mercury	<0.0008 <0.00004		
Nickel	0.021 0.0011		
Phosphorus	0.4 0.021		
Selenium	<0.006 <0.0003		
Zinc	0.32 0.017		
Total of Sb, As, Cd, Pb, Hg	≤1.7 ≤0.088		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	101		

Prepared for: Nyrstar Hobart

Date Client 10/05/2023 Nyrstar Hobart Report R014539 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation. 230328

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Vertical Circular Duct orientation & shape Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2 D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0818 & 0935		
Temperature, °C	19		
Velocity at sampling plane, m/s	5.8		
Volumetric flow rate, actual, m³/min	55		
Volumetric flow rate (wet STP), m³/min	52		
Volumetric flow rate (dry STP), m³/min	51		
Mass flow rate (wet basis), kg/hour	4000		

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart Report R014539 Stack ID Anode Casting Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State **Process Conditions** Casting area in normal operation. 230328

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	0830 - 0930		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		4500	230000	
2-Methylnaphthale	ne	140	7300	
Acenaphthylene		<20	<1000	
Acenaphthene		230	12000	
Fluorene		110	5600	
Phenanthrene		750	38000	
Anthracene		34	1700	
Fluoranthene		440	22000	
Pyrene		230	12000	
Benz(a)anthracene		24	1200	
Chrysene		120	6200	
Benzo(b)fluoranthe	ne	<20	<1000	
Benzo(k)fluoranthe	ne	<20	<1000	
Benzo(e)pyrene		<20	<1000	
Benzo(a)pyrene		<20	<1000	
Perylene		<20	<1000	
Indeno(1,2,3-cd)pyr	ene	<20	<1000	
Dibenz(ah)anthrace	ene	<20	<1000	
Benzo(ghi)perylene		<20	<1000	
Total 16 PAHs		6400	330000	
Total 19 PAHs		6600	340000	
BaP-TEQ				
Lower Bound		3.6	190	
Middle Bound		22	1100	
Upper Bound		41	2100	

Abbreviations and definitions

Ba P-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	100

Page: 66 of 98

Prepared for: Nyrstar Hobart

2.11 Zinc Plant 1 Baghouse – ZP1

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area.

230328

Sampling Plane DetailsSampling plane dimensions390 x 500 mmSampling plane area0.195 m²Sampling port size, number1" Holes (x3)Duct orientation & shapeVertical RectangularDownstream disturbanceBend >2 DUpstream disturbanceBend >6 DNo. traverses & points sampled3 6

Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1224 & 1339		
Temperature, °C	18		
Velocity at sampling plane, m/s	7.1		
Volumetric flow rate, actual, m³/min	83		
Volumetric flow rate (wet STP), m³/min	79		
Volumetric flow rate (dry STP), m³/min	78		
Mass flow rate (wet basis), kg/hour	6100		

Gas Analyser Results	Average		
Samplingtime	1137 - 1236		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.3		
Sulfur di oxi de	<6 <0.4		
Carbon monoxide	<6 <0.5		
	Concentration % v/v		
Carbon dioxide	<0.4		
Oxygen	20.9		

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area. 230328

Isokinetic Results		Results		
	Sampling time	1235-1336		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<3	<0.2	
PM10	(PSA)	<3	<0.2	
PM2.5	(PSA)	<3	<0.2	
Isokinetic Sampling Parameters				
Sampling time, min 60)		
Isokinetic rate, %		101		
Gravimetric analysis date (total	particulate)	30-05-2023		

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.03	

VOC's C5-C20	Results gtime 1250-1310
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.4 <0.03

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Page: 68 of 98

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 **Stack ID** Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area. 230328

Sampling Plane Details

390 x 500 mm Sampling plane dimensions Sampling plane area 0.195 m² Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 3 6 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

Stack Parameters Moisture content, %v/v 1 28.9 (wet) 29.0 (dry) Gas molecular weight, g/g mole Gas density at STP, kg/m³ 1.29 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.22 **Gas Flow Parameters** Flow measurement time(s) (hhmm) 1115 & 1224 Temperature, °C 18 7.2 Velocity at sampling plane, m/s Volumetric flow rate, actual, m³/min 84 Volumetric flow rate (wet STP), m³/min 80 Volumetric flow rate (dry STP), m³/min 79

Isokinetic Results	Results	
Samplingtime	1120-1221	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.22 0.017	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	99	

6200

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area.

230328

Sampling Plane Details

Sampling plane dimensions 390 x 500 mm Sampling plane area 0.195 m² 1" Holes (x3) Sampling port size, number Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Bend >6 D Upstream disturbance No. traverses & points sampled 3 6 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1224 & 1339		
Temperature, °C	18		
Velocity at sampling plane, m/s	7.1		
Volumetric flow rate, actual, m³/min	83		
Volumetric flow rate (wet STP), m³/min	79		
Volumetric flow rate (dry STP), m³/min	78		
Mass flow rate (wet basis), kg/hour	6100		

Isokinetic Results	Results	
Samplingtime	1235-1336	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.007 <0.0005	
Arsenic	<0.003 <0.0002	
Beryllium	<0.0009 <0.00007	
Cadmium	0.0063 0.00049	
Chromium	<0.001 <0.00009	
Cobalt	<0.001 <0.00009	
Copper	<0.001 <0.00009	
Lead	0.12 0.009	
Manganese	0.22 0.017	
Mercury	<0.0007 <0.00006	
Nickel	<0.002 <0.0002	
Phosphorus	<0.03 <0.002	
Selenium	<0.007 <0.0005	
Zinc	0.41 0.032	
Total of Sb, As, Cd, Pb, Hg	≤0.13 ≤0.01	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	98	

Page: 70 of 98

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 1 Baghouse - ZP 1

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Normal production in Zinc Plant 1 area. 230328

Sampling Plane Details

Sampling plane dimensions 390 x 500 mm Sampling plane area 0.195 m² Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 3 6 Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters	
Moisture content, %v/v	1.7
Gas molecular weight, g/g mole	28.8 (wet)

29.0 (dry) Gas density at STP, kg/m³ 1.28 (wet) 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.22

Gas Flow Parameters	
Flow measurement time(s) (hhmm)	1115 & 1224
Temperature, °C	18
Velocity at sampling plane, m/s	7.2
Volumetric flow rate, actual, m³/min	84
Volumetric flow rate (wet STP), m³/min	80
Volumetric flow rate (dry STP), m³/min	79
Mass flow rate (wet basis), kg/hour	6200

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area. 230328

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1120 - 1221		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		80000	6300000	
2-Methylnaphthale	ne	420	33000	
Acenaphthylene		<30	<2000	
Acenaphthene		95	7500	
Fluorene		61	4800	
Phenanthrene		650	51000	
Anthracene		66	5200	
Fluoranthene		650	51000	
Pyrene		320	25000	
Benz(a)anthracene		<30	<2000	
Chrysene		160	12000	
Benzo(b)fluoranthe	ne	120	9300	
Benzo(k)fluoranthe	ne	32	2500	
Benzo(e)pyrene		<30	<2000	
Benzo(a)pyrene		<30	<2000	
Perylene		<30	<2000	
Indeno(1,2,3-cd)pyr	ene	<30	<2000	
Dibenz(ah)anthrace	ene	<30	<2000	
Benzo(ghi)perylene		<30	<2000	
Total 16 PAHs		83000	6500000	
Total 19 PAHs		83000	6500000	
BaP-TEQ				
Lower Bound		17	1300	
Middle Bound		38	3000	
Upper Bound		59	4600	

Abbreviations and definitions

Ba P-TEQ Benzo(a) pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results	
PAHs		
Sampling time, min	60	
Isokinetic rate, %	98	

Page: 72 of 98

Prepared for: Nyrstar Hobart

2.12 Zinc Plant 3 Baghouse – ZP3

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

230328

Sampling Plane Details

 Sampling plane dimensions
 285 mm

 Sampling plane area
 0.0638 m²

 Sampling port size, number
 2" Holes (x2)

 Duct orientation & shape
 Horizontal Circular

 Downstream disturbance
 Bend 1 D

 Upstream disturbance
 Bend 4 D

 No. traverses & points sampled
 2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1544 & 1700		
Temperature, °C	24		
Velocity at sampling plane, m/s	19		
Volumetric flow rate, actual, m³/min	72		
Volumetric flow rate (wet STP), m³/min	67		
Volumetric flow rate (dry STP), m³/min	66		
Mass flow rate (wet basis), kg/hour	5200		

Gas Analyser Results	Average	
Samplingtime	1548 - 1647	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.3	
Sulfur dioxide	<6 <0.4	
Carbon monoxide	<6 <0.4	
	Concentration % v/v	
Carbon dioxide	<0.4	
Oxyge n	20.9	

Prepared for: Nyrstar Hobart

Date10/05/2023ClientNyrstar Hobart

Report R014539 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

 Process Conditions
 Normal production in Zinc Plant 3 area.
 230328

Isokinetic Results		Results	
Sar	mplingtime	1550-1655	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<2	<0.1
PM10	(PSA)	<2	<0.1
PM2.5	(PSA)	<2	<0.1
Isokinetic Sampling Parameters			
Sampling time, min		64	
Isokinetic rate, %		91	
Gravimetric analysis date (total par	ticulate)	30-05-2023	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.03	

VOC's C5-C20		Results
	Samplingtime	1606-1626
		Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾		<0.4 <0.03

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Prepared for: Nyrstar Hobart

230328

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0638 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

285 mm

0.0638 m²

2" Holes (x2)

Horizontal Circular

Bend 1 D

Bend 4 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1427 & 1544		
Temperature, °C	26		
Velocity at sampling plane, m/s	18		
Volumetric flow rate, actual, m³/min	71		
Volumetric flow rate (wet STP), m³/min	65		
Volumetric flow rate (dry STP), m³/min	64		
Mass flow rate (wet basis), kg/hour	5000		

Isokinetic Results	Results	
Samplingtime	1436-1541	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.02 <0.002	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	93	

Prepared for: Nyrstar Hobart

230328

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.0638 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

285 mm

O.0638 m²

2" Holes (x2)

Horizontal Circular

Bend 1 D

Bend 4 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters Moisture content,

Moisture content, %v/v 1.3
Gas molecular weight, g/g mole 28.8 (wet) 29.0 (dry)
Gas density at STP, kg/m³ 1.29 (wet) 1.29 (dry)
Gas density at discharge conditions, kg/m³ 1.19

Gas Flow Parameters

Isokinetic Results	Results	
Samplingtime	1550-1655	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.005 <0.0003	
Arsenic	<0.002 <0.0001	
Beryllium	<0.0006 <0.00004	
Cadmium	0.0071 0.00047	
Chromium	<0.0008 <0.00005	
Cobalt	<0.001 <0.00006	
Copper	<0.0008 <0.00005	
Lead	0.057 0.0038	
Manganese	0.11 0.0076	
Mercury	<0.0005 <0.00004	
Nickel	<0.002 <0.0001	
Phosphorus	<0.02 <0.001	
Selenium	<0.005 <0.0003	
Zinc	0.92 0.061	
Total of Sb, As, Cd, Pb, Hg	≤0.072 ≤0.0047	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	96	

Prepared for: Nyrstar Hobart

230328

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 Stack ID Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0638 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

285 mm

0.0638 m²

2" Holes (x2)

Horizontal Circular

Bend 1 D

Bend 4 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

Mass flow rate (wet basis), kg/hour

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Stack Parameters			
Moisture content, %v/v	1.3		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1427 & 1544		
Temperature, °C	26		
Velocity at sampling plane, m/s	18		
Volumetric flow rate, actual, m³/min	71		
Volumetric flow rate (wet STP), m³/min	65		
Volumetric flow rate (dry STP), m³/min	64		

5000

Prepared for: Nyrstar Hobart

Date 10/05/2023 Client Nyrstar Hobart

Report R014539 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation. 230328

Polycyclic Aromatic	Hydrocarbons	Resu	lts	
(PAHs)	Samplingtime	1436 - 1541		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		4700	300000	
2-Methylnaphthale	ne	90	5800	
Acenaphthylene		<20	<1000	
Acenaphthene		<20	<1000	
Fluorene		<20	<1000	
Phenanthrene		120	7800	
Anthracene		<20	<1000	
Fluoranthene		100	6600	
Pyrene		54	3500	
Benz(a)anthracene		<20	<1000	
Chrysene		<20	<1000	
Benzo(b)fluoranthe	ene	<20	<1000	
Benzo(k)fluoranthe	ne	<20	<1000	
Benzo(e)pyrene		<20	<1000	
Benzo(a)pyrene		<20	<1000	
Perylene		<20	<1000	
Indeno(1,2,3-cd)pyr	ene	<20	<1000	
Dibenz(ah)anthrace	ene	<20	<1000	
Benzo(ghi)perylene		<20	<1000	
Total 16 PAHs		5000	320000	
Total 19 PAHs		5100	320000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		17	1100	
Upper Bound		34	2200	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	94

Page: 78 of 98

Prepared for: Nyrstar Hobart

2.13 MZR Furnace Baghouse

Date 15/05/2023 Client Nyrstar Hobart Report R014539 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Bend 2 D

Bend 6 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.03		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1518 & 1631		
Temperature, °C	55		
Velocity at sampling plane, m/s	8.9		
Volumetric flow rate, actual, m³/min	100		
Volumetric flow rate (wet STP), m³/min	84		
Volumetric flow rate (dry STP), m³/min	83		
Mass flow rate (wet basis), kg/hour	6500		

Gas Analyser Results	Average	
Sampling time	1428 - 1501	
	Concentration Mass Rate	
Combustion Gases	mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.3	
Sulfur dioxide	<6 <0.5	
Carbon monoxide	<6 <0.5	
	Concentration	
	% v/v	
Carbon dioxide	<0.4	
Oxvge n	20.9	

Page: 79 of 98

Prepared for: Nyrstar Hobart

15/05/2023 Date Client Nyrstar Hobart MZR Furnace Report R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 230328

Isokinetic Results	Results		
Samı	olingtime	1520-1626	
		Concentration Mass Rate mg/m³ g/min	
Total particulate matter		<3 <0.2	
PM10	(PSA)	<3 <0.2	
PM2.5	(PSA)	<3 <0.2	
Isokinetic Sampling Parameters			
Sampling time, min		64	
Isokinetic rate, %	rate, %		
Gravimetric analysis date (total parti	culate)	30-05-2023	

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.04	

VOC's C5-C20		Results	
	Samplingtime	1530-1550	
		Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾		<0.4 <0.04	

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Page: 80 of 98

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report MZR Furnace R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Bend 2 D

Bend 6 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

Stack Parameters			
Moisture content, %v/v	0.54		
Gas molecular weight, g/g mole	29.0 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1400 & 1518		
Temperature, °C	54		
Velocity at sampling plane, m/s	9		
Volumetric flow rate, actual, m³/min	110		
Volumetric flow rate (wet STP), m³/min	86		
Volumetric flow rate (dry STP), m³/min	85		
Mass flow rate (wet basis), kg/hour	6700		

Isokinetic Results	Results	
Samplingtime	1410-1516	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.003	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	97	

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report R014539 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS MZR Furnace in operation. **Process Conditions**

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Bend 2 D

Bend 6 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.04		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1400 & 1518		
Temperature, °C	54		
Velocity at sampling plane, m/s	9		
Volumetric flow rate, actual, m³/min	110		
Volumetric flow rate (wet STP), m³/min	86		
Volumetric flow rate (dry STP), m³/min	85		
Mass flow rate (wet basis), kg/hour	6700		

Isokinetic Results	Results	
Samplingtime	1410-1516	
	Concentration Mass Rate	
	mg/m³ g/min	
Antimony	<0.006 <0.0005	
Arsenic	<0.003 <0.0002	
Beryllium	<0.0008 <0.00007	
Cadmium	0.0023 0.0002	
Chromium	<0.001 <0.00008	
Cobalt	<0.001 <0.00008	
Copper	0.0011 0.000097	
Lead	0.016 0.0014	
Manganese	0.011 0.00091	
Mercury	<0.0007 <0.00006	
Nickel	<0.002 <0.0002	
Phosphorus	<0.02 <0.002	
Selenium	<0.006 <0.0005	
Zinc	0.52 0.044	
Total of Sb, As, Cd, Pb, Hg	≤0.028 ≤0.0023	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	97	

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report MZR Furnace R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Bend 2 D

Bend 6 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The discharge is assumed to be composed of dry air and moisture

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.03		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1518 & 1631		
Temperature, °C	55		
Velocity at sampling plane, m/s	8.9		
Volumetric flow rate, actual, m³/min	100		
Volumetric flow rate (wet STP), m³/min	84		
Volumetric flow rate (dry STP), m³/min	83		
Mass flow rate (wet basis), kg/hour	6500		

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report MZR Furnace R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Polycyclic Aromatic I	Hydrocarbons	Resu	lts	
(PAHs)	Sampling time	1520 - 1626		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		49000	4100000	
2-Methylnaphthalen	e	680	56000	
Acenaphthylene		<20	<2000	
Acenaphthene		110	8900	
Fluorene		61	5000	
Phenanthrene		440	37000	
Anthracene		<20	<2000	
Fluoranthene		220	18000	
Pyrene		99	8200	
Benz(a)anthracene		<20	<2000	
Chrysene		<20	<2000	
Benzo(b)fluoranther	ne	<20	<2000	
Benzo(k)fluoranthen	e	<20	<2000	
Benzo(e)pyrene		<20	<2000	
Benzo(a)pyrene		<20	<2000	
Perylene		<20	<2000	
Indeno(1,2,3-cd)pyre	ne	<20	<2000	
Dibenz(ah)anthrace	ne	<20	<2000	
Benzo(ghi)perylene		<20	<2000	
Total 16 PAHs		50000	4100000	
Total 19 PAHs		51000	4200000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		22	1800	
Upper Bound		43	3600	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	95

Page: 84 of 98

Prepared for: Nyrstar Hobart

2.14 MZR Dross Stack

Date 15/05/2023 Client Nyrstar Hobart Report R014539 Stack ID MZR Dross Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Sampling Plane Details Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Ideal sampling plane Sample plane conformance to AS 4323.1

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	0.86		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1236		
Temperature, °C	26		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	130		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Gas Analyser Results	Average		
Samplingtime	1345 - 1425		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <0.5		
Carbon monoxide	<6 <0.8		
	Concentration % v/v		
Carbon dioxide	<0.4		
Oxyge n	20.9		

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart MZR Dross Stack Report R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** MZR Furnace in operation. 230328

Isokinetic Results		Results
	Samplingtime	1240-1257
		Concentration Mass Rate mg/m³ g/min
Total particulate matter		<7 <0.9
PM10	(PSA)	<7 <0.9
PM2.5	(PSA)	<7 <0.9
Isokinetic Sampling Parameters		
Sampling time, min		16
Isokinetic rate, %		103
Gravimetric analysis date (total particulate)		30-05-2023

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.4 <0.06	

VOC's C5-C20		Results	
	Sampling time	1341-1501	
		Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾		<0.4 <0.06	

$\textbf{(1)} \ Unless otherwise \ reported, the following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Please note, toluene results not reported due to suspected contamination.

Page: 86 of 98

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report R014539 MZR Dross Stack Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State MZR Furnace in operation. **Process Conditions** 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.196 m²

Sampling port size, number

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	0.86		
Gas molecular weight, g/g mole	29.0 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1236		
Temperature, °C	26		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	130		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Isokinetic Results	Results	
Samplingtime	1240-1257	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.09 <0.01	
Isokinetic Sampling Parameters		
Sampling time, min	16	
Isokinetic rate, %	102	

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart MZR Dross Stack Report R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation. 230328

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² 4" BSP (x2) Sampling port size, number Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D No. traverses & points sampled 2 8

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	0.84		
Gas molecular weight, g/g mole	29.0 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1319		
Temperature, °C	26		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	130		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Isokinetic Results	Results	
Sampling time	1320-1417	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.008 <0.001	
Arsenic	<0.004 <0.0005	
Beryllium	<0.001 <0.0001	
Cadmium	0.005 0.00066	
Chromium	<0.001 <0.0002	
Cobalt	<0.001 <0.0002	
Copper	0.0031 0.0004	
Lead	0.04 0.0053	
Manganese	0.013 0.0017	
Mercury	<0.0009 <0.0001	
Nickel	0.0054 0.00071	
Phosphorus	<0.03 <0.004	
Selenium	<0.008 <0.001	
Zinc	0.73 0.095	
Total of Sb, As,Cd, Pb, Hg	≤0.058 ≤0.0076	
Isokinetic Sampling Parameters		
Sampling time, min	56	
Isokinetic rate, %	97	

Page: 88 of 98

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report R014539 Stack ID MZR Dross Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State MZR Furnace in operation. **Process Conditions** 230328

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical (ircular plane)

Bend >2 D

Junction >6 D

Sample plane conformance to AS 4323.1 Ideal sampling plane

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	0.86		
Gas molecular weight, g/g mole	29.0 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1319		
Temperature, °C	26		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	130		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/hour	10000		

Prepared for: Nyrstar Hobart

Date 15/05/2023 Client Nyrstar Hobart Report MZR Dross Stack R014539 Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Polycyclic Aromatic Hydrocarbons		Resu	lts	
(PAHs)	Samplingtime	1320 - 1417		
		Concentration ng/m³	Mass Rate ng/min	
Naphthalene		4400	570000	
2-Methylnaphthale	ene	120	16000	
Acenaphthylene		<20	<2000	
Acenaphthene		<20	<2000	
Fluorene		18	2400	
Phenanthrene		150	19000	
Anthracene		<20	<2000	
Fluoranthene		100	14000	
Pyrene		56	7300	
Benz(a)anthracene		<20	<2000	
Chrysene		<20	<2000	
Benzo(b)fluoranthe	ene	<20	<2000	
Benzo(k)fluoranthe	ene	<20	<2000	
Benzo(e)pyrene		<20	<2000	
Benzo(a)pyrene		<20	<2000	
Perylene		<20	<2000	
Indeno(1,2,3-cd)pyr	rene	<20	<2000	
Dibenz(ah)anthrac	ene	<20	<2000	
Benzo(ghi)perylene	e	<20	<2000	
Total 16 PAHs		4700	610000	
Total 19 PAHs		4800	630000	
BaP-TEQ				
Lower Bound		0	0	
Middle Bound		16	2100	
Upper Bound		32	4100	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency

factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	56
Isokinetic rate, %	97

Page: 90 of 98

Prepared for: Nyrstar Hobart

2.15 Start-up Scrubber

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDStart-up Scrubber

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 5 running through the scrubber, 390amps, bombay doors open 20%

Sampling Plane Details

Sampling plane dimensions 1050 mm Sampling plane area 0.866 m² Sampling port size, number & depth 4" BSP (x2), 800 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Centrifugal fan >6 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Ideal sampling plane

Stack Parameters Moisture content, %v/v 2.6 Gas molecular weight, g/g mole 28.7 (wet) 29.0 (dry) 1.28 (wet) Gas density at STP, kg/m³ 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.12 Gas Flow Parameters 0828 & 0838 Flow measurement time(s) (hhmm) Temperature, °C 38 Velocity at sampling plane, m/s 15 Volumetric flow rate, actual, m³/min 780 Volumetric flow rate (wet STP), m³/min 690 Volumetric flow rate (dry STP), m³/min 670 Mass flow rate (wet basis), kg/hour 53000

Gas Analyser Results	Average	
Sampling time	0829 - 0829	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	5.8 3.9	
Sulfur dioxide	<6 <4	
Carbon monoxide	940 620	
	Concentration % v/v	
Carbon dioxide	0.5	
Oxygen	20.2	

Prepared for: Nyrstar Hobart

230328

Date16/05/2023ClientNyrstar HobartReportR014539Stack IDStart-up Scrubber

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Roaster 5 running through the scrubber, 390amps, bombay doors open 20%

Isokinetic Results	Resu	Its	
Sampling time	0830-0932		
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	17	12	
Antimony	<0.007	<0.005	
Arsenic	0.013	0.0089	
Beryllium	<0.0009	<0.0006	
Cadmium	0.054	0.036	
Chromium	<0.001	<0.0009	
Cobalt	<0.001	<0.0008	
Copper	0.016	0.011	
Lead	1.3	0.85	
Manganese	0.014	0.0095	
Mercury	<0.001	<0.0006	
Nickel	0.0035	0.0023	
Phosphorus	<0.03	<0.02	
Selenium	<0.007	<0.005	
Zinc	3.5	2.4	
Total of Sb, As, Cd, Pb, Hg	≤1.3	≤0.9	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	10	7	
Gravimetric analysis date (total particulate)	26-05-	2023	

Page: 92 of 98

Prepared for: Nyrstar Hobart

3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA accredited		
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis	
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA	
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓	
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓	
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j	
Molecular weight	NA	USEPA Method 3	not specified	NA	✓	
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓	
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓	
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓	
Nitrous oxide	NA	gas analyser	12%	NA	x ^h	
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓	
Speciated volatile organic compounds	Ektimo 344	Ektimo 344	19%	✓	✓†	
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	✓**	
Dantia data matta (DNA C DNA) bu santiala		Ektimo in-house				
Particulate matter (PM ₁₀ & PM _{2.5}) by particle	AS 4323.2	method using	not specified	×	× [†]	
size analysis		Malvern Mastersizer 3000				
Total (gaseous & particulate) metals (As, Be,	USEPA Method 29	Envirolab in-house methods	15%	✓	√ ‡	
Cd, Co, Cr, Cu, Hg, Mn, Ni, P, Pb, Sb, Se, Zn)	USEPA IVIETITUU 29	Metals-020/021/022	13/0	•	v	
Total fluoride	USEPA Method 13B	Ektimo 235	17%	✓	✓†	
Polycyclic aromatic hydrocarbons (PAHs)	USEPA SW-846 0010	NMI in-house method NGCMS 11.27	21%	✓	√¶	
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	✓†	
					030723	

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

Page: 93 of 98

[¶] Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 14 June 2023 in report RN1395459.

[†] Analysis performed by Ektimo. Results were reported to Ektimo on.

²⁹ May 2023 in report LV-004462.

²⁹ May 2023 in report LV-004468.

² June 2023 in report LV-004488.

⁶ June 2023 in report LV-004506.

⁶ June 2023 in report LV-004518.

^{††} Gravimetric analysis conducted at the Ektimo VIC laboratory.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 6 June 2023 in report 324378.

^h Nitrous oxide analysis performed using the instrumental technique as per USEPA Method 7E.

^j Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

Prepared for: Nyrstar Hobart

Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

5 **Definitions**

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry or wet basis

Approximately < Less than Greater than

Greater than or equal to AS Australian Standard BaP-TFO Benzo(a)pyrene toxic equivalents

CTM Conditional test method

Duct diameter or equivalent duct diameter for rectangular ducts

'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half D₅₀

of the particles are retained by the cyclone and half pass through it. The D₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes Disturbance

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter. **Environment Protection Authority**

FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

Not applicable

NATA National Association of Testing Authorities NT Not tested or results not required

 PM_{10} Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (µm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

USEPA United States Environmental Protection Agency

Velocity difference The percentage difference between the average of initial flows and after flows.

Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or VOC having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other

elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts. When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit. 95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Upper bound

EPA

Page: 94 of 98

Prepared for: Nyrstar Hobart

Ektimo

6 Appendix 1: Site Photos

Cadmium Smelter Plant Scrubber Stack

Copper Sulphate Crystalliser Plant Vent Stack

Casting Ventilation 1 - V1

Casting Ventilation 2 – V2

Roaster Baghouse

Anode Casting

Zinc Plant 1 Baghouse – ZP1

Zinc Plant 3 Baghouse – ZP3

MZR Furnace Stack

Prepared for: Nyrstar Hobart

Ektimo

MZR Dross

Start Up Scrubber

Prepared for: Nyrstar Hobart

7 Appendix 2: Weather Observations

Hobart, Tasmania

May 2023 Daily Weather Observations

Day Min Max Rain Evap Sun Dir Spd Timo Temp RH Cld Dir Spd MSLP Temp RH Cld Cld Spd MSLP Temp RH Cld Cld Spd MSLP Temp RH Cld Cld Spd MSLP Temp RH Cld Spd Temp Temp RH Cld Temp Temp RH Cld Temp Temp RH Cld Temp Te			Ten	nps				Max	wind	gust			9:00	AM					3:0	0 PM		
1	Date	Day			Rain	Evap	Sun			_	Temp	RH	Cld		Spd	MSLP	Temp	RH	Cld		Spd	MSLP
2			°C	°C	mm	mm	hours	Dir	km/h		°c		8 th	Dir	km/h	hPa	°C		8 th	Dir	km/h	hPa
3 We 5.9 12.1 6.8 SSW 44 16.47 8.4 95 WSW 9 1003 11.5 79 SSW 17 10	1	Мо	8.3	11.9	0			NW	28	10:43	10	78		NNW	15	1016	11.6	83		NNW	9	1012
4 Th 5 15.8 1.8 N 28 14:33 7.9 84 NNW 13 1020 15 51 N 15 11 5 15 5 15 Fr 6.6 17.5 0 NW 39 14:19 9.6 74 N 9 1010 14.2 71 SSE 11 11 16 6 Sa 4.6 12.6 0 SSW 39 15:08 7.6 65 N 9 1018 10.8 47 SSW 17 11 8 MO 2.1 15.6 0 WSW 54 16:29 9.3 65 NW 28 1018 13.3 68 S 13 11 10 We 8.8 15.8 0 S 48 13:42 11.9 67 SE 7 1025 14 55 WSW 17 11 11 17 4.6 16.6 0 NNW 43 5:09 11 64 NW 15 1027 15.8 50 NNE 13 11 12 Fr 6.6 18 0 NNW 33 1:53 11 64 NW 15 1027 15.8 60 NW 15 11 15 MO 6.6 18.9 0 NNW 33 1:53 11 64 NW 13 1024 16.6 39 WSW 15 11 16 NW 6.6 18.9 0 NNW 56 11:52 6.6 82 NNW 17 1028 16.9 43 NNW 9 11 15 MO 6.6 18.9 0 NNW 57 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 11 18 17 NNW 59 11.7 17 1028 16.9 43 NNW 9 11 18 18 Th 2.9 13.7 0.2 NNW 50 10:23 8 70 NNW 9 107 10.7 51 SW 11 10 17 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 17 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 17 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 50 10:23 8 70 NNW 9 1017 10.7 51 SW 11 10 12 NNW 50 11:52 6.6 82 NNW 19 1017 10.7 51 SW 11 10 12 NNW 50 10:23 8 70 NNW 9 10:17 10.7 51 SW 11 10 12 NNW 50 10:23 8 70 NNW 9 10:17 10.5 57 NNW 22 10 10 18 Th 2.9 13.7 0.2 NNW 50 10:23 8 70 NNW 9 10:17 10.5 57 NNW 22 10 12 NNW 50 10:23 8 70 NNW 9 10:17 10.5 57 NNW 22 10 10 11.8 48 W 24 11 11 12 NNW 50 10:24 NNW 50 10:24 NNW 50 10:25 NNW	2	Tu	9.3	17.2	1.2			NW	31	6:00	11.9	81		NW	13	1009	15.5	69		Е	11	1006
5	3	We	5.9	12.1	6.8			SSW	44	16:47	8.4	95		WSW	9	1003	11.5	79		SSW	17	1007
6 Sa 4.6 12.6 0 SSW 39 15:08 7.6 65 N 9 1018 10.8 47 SSW 17 11 7 10 SSW 39 13:18 43 77 N 13 1025 8.9 60 SW 17 11 8 M	4	Th	5	15.8	1.8			N	28	14:33	7.9	84		NNW	13	1020	15	51		N	15	1017
7 Su 2 11.7 0 SSW 39 13:18 4.3 77 N 13 1025 8.9 60 SW 17 10 8 Mo 2.1 15.6 0 WSW 54 16:29 9.3 65 NW 28 1018 13.3 68 S 13 10 10 10 We 8.6 15.8 0 SW 65 6:55 13 59 SW 26 1018 13.5 60 SW 15 10 10 We 8.8 15.8 0 S 48 13:42 11.9 67 SE 7 1025 14 55 WSW 17 10 11 Th 4.6 16.6 0 NNW 41 21:30 6.6 84 NW 15 1027 15.8 50 NNE 13 10 12 Fr 6.6 18 0 NNW 43 5:09 11 64 NW 13 1024 16.6 39 WSW 15 10 13 Sa 7.3 16.4 0 NNW 43 5:09 11 64 NW 13 1024 16.6 39 WSW 15 10 13 Sa 7.3 16.4 0 NNW 56 11:52 6.6 82 NNW 17 1028 16.9 43 NNW 9 10 15 MW 67 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 11 16 Tu 8.4 11.6 0.4 WSW 52 7.41 8.6 63 SW 19 1017 10.7 51 SW 11 10 17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1017 10.7 51 SW 11 10 17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NNW 39 15:16 6.1 79 NNW 6 1023 12.7 55 NNW 22 10 19 Fr 5.9 11.7 0.4 WSW 28 1:20 7.3 85 NNW 9 1017 10.5 57 NNW 11 10 20 Sa 4.9 12.5 0.2 NNW 50 10:23 8 70 NNW 9 1017 10.5 57 NNW 11 10 22 M 6.5 18.2 0.2 NNW 57 10:51 SSW 22 M 7.6 18.2 0.2 NNW 57 10:51 SSW 21 NNW 57 10:51 SSW 21 NNW 29 10 11 10.5 57 NNW 11 10 10 10 10 10 10 10 10 10 10 10 10	5	Fr	6.6	17.5	0			NW	39	14:19	9.6	74		N	9	1010	14.2	71		SSE	11	1006
8 Mo 2.1 15.6 0 WSW 54 16.29 9.3 65 NW 28 1018 13.3 68 S 13 11 9 TU 9.1 14.2 0 SW 65 6.55 13 59 SW 26 1018 13.5 60 SW 15 10 10 We 8.8 15.8 0 S 48 13.42 11.9 67 SE 7 1025 14 55 WSW 17 11 11 Th 4.6 16.6 0 NNW 41 21:30 6.6 84 NW 15 1027 15.8 50 NNE 13 10 12 FF 6.6 18 0 NNW 43 5.09 11 64 NW 13 1024 16.6 39 WSW 15 11 13 Sa 7.3 16.4 0 NNW 43 5.09 11 66 NW 15 1031 15.8 48 WNW 9 16 11 Sa 4.2 17.2 0 NNW 56 11:52 6.6 82 NNW 17 10 12.8 16.9 43 NNW 9 16 15 Mo 6.6 18.9 0 NW 67 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 16 16 TU 8.4 11.6 0.4 WSW 52 7:41 8.6 63 SW 19 1017 10.7 51 SW 11 11 17 We 3.8 14.2 0 NNW 30 3.36 5.9 80 NW 19 1029 13.8 47 NNE 11 10 18 Th 2.9 13.7 0.2 NW 39 15:16 6.1 79 NNW 6 1023 12.7 55 NNW 22 11 19 FF 5.9 11.7 0.4 WSW 28 12:0 7.3 85 NNW 9 1017 10.5 57 NNW 22 11 12 Su 6.5 14.7 1 SW 56 0.5 14.7 1 SW 56 0.5 18 7.6 75 SSW 22 1010 11.8 48 NW 24 11 12 SW 6.5 14.7 1 SW 6.5 14.7 1 SW 56 13.18 7.6 75 SSW 22 1010 11.8 48 NW 24 11 12 SW 6.5 14.7 1 SW 56 13.5 68 NW 35 1021 15.9 57 NNW 22 16 ST 11.2 12.5 15.4 1.4 NW 83 5.48 11.2 82 NW 35 1021 15.9 57 NNW 22 16 ST 11.2 15.5 15.5 15.0 NNW 69 14:34 12.3 61 NNW 20 1006 14.6 50 NNW 19 102 15.8 48 NNW 19 102 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8	6	Sa	4.6	12.6	0			SSW	39	15:08	7.6	65		N	9	1018	10.8	47		SSW	17	1018
9 Tu 9,1 14,2 0 SW 65 6.55 13 59 SW 26 1018 13.5 60 SW 15 10 10 We 8.8 15.8 0 S 48 13.42 11.9 67 SE 7 1025 14 55 WSW 17 10 11 Th 4.6 16.6 0 NINW 41 21:30 6.6 84 NW 15 1027 15.8 50 NNE 13 10 12 Fr 6.6 18 0 NNW 43 5:09 11 64 NW 13 1024 16.6 39 WSW 15 10 11 Sa 10 12 Fr 6.6 18 0 NNW 43 5:09 11 66 NW 15 1031 15.8 48 WNW 9 10 11 Sa 10 15.8 48 WNW 9 10 10 15 Mo 6.6 18.9 0 NNW 67 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 10 16 Tu 8.4 11.6 0.4 WSW 52 7.41 8.6 63 SW 19 1017 10.7 51 SW 11 10 17 We 3.8 14.2 0 NNW 39 15.6 6.1 79 NNW 6 1023 12.7 55 NNW 22 11 18 Th 2.9 13.7 0.2 NW 39 15.6 6.1 79 NNW 6 1023 12.7 55 NNW 22 11 19 Fr 5.9 11.7 0.4 WSW 28 1.20 7.3 85 NNW 9 1017 10.5 57 NNW 11 10 20 Sa 4.9 12.5 0.2 NW 50 10.23 8 70 NNW 26 1009 12.1 56 NW 24 10 22 Mo 7.6 18.2 0.2 NNW 57 20.8 14.7 57 N 22 1010 11.8 48 W 24 10 22 Mo 7.6 18.2 0.2 NNW 57 20.8 14.7 57 N 22 1010 11.8 48 W 24 10 23 Tu 12.7 16.3 0 NW 57 20.8 14.7 63 NNE 20 1017 19.1 47 NW 28 10 25 Th 11.2 15.4 1.4 NW 83 5.48 11.2 82 NW 24 1001 12.5 50 NNW 19 10 25 So NNW 19 10 10 10 10 10 10 10 10 10 10 10 10 10	7	Su	2	11.7	0			SSW	39	13:18	4.3	77		N	13	1025	8.9	60		SW	17	1024
10	8	Мо	2.1	15.6	0			WSW	54	16:29	9.3	65		NW	28	1018	13.3	68		S	13	1016
11	9	Tu	9.1	14.2	0			SW	65	6:55	13	59		SW	26	1018	13.5	60		SW	15	1020
12 Fr 6.6 18 0 NNW 43 5:09 11 64 NW 13 1024 16.6 39 WSW 15 101 13 Sa 7.3 16.4 0 NNW 33 1:53 11 66 NW 15 1031 15.8 48 WNW 9 16 11 14 Su 4.2 17.2 0 NNW 56 11:52 6.6 82 NNW 17 1028 16.9 43 NNW 9 16 15 Mo 6.6 18.9 0 NW 67 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 16 16 Tu 8.4 11.6 0.4 WSW 52 7:41 8.6 63 SW 19 1017 10.7 51 SW 11 10 17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1017 10.7 51 SW 11 10 18 Th 2.9 13.7 0.2 NW 39 15:16 6.1 79 NNW 6 1023 12.7 55 NNW 22 11 19 Fr 5.9 11.7 0.4 WSW 28 1:20 7.3 85 NNW 9 1017 10.5 57 NNW 11 10 20 Sa 4.9 12.5 0.2 NW 50 10:23 8 70 NNW 26 1009 12.1 56 NW 24 10 21 Su 6.5 14.7 1 SW 56 3:18 7.6 75 SSW 22 1010 11.8 48 W 24 10 22 Mo 7.6 18.2 0.2 NNW 57 10:51 13.5 68 NW 35 1021 15.9 57 NW 22 11 2.7 16.3 0 NW 65 12:07 14.7 63 NNE 20 1017 19.1 47 NW 26 10 12.5 Th 11.2 15.4 1.4 NW 83 5:48 11.2 82 NW 24 1001 12.5 60 NW 19 10 12.7 Sa 9.3 15.6 0 NW 69 14:34 12.3 61 NNW 31 1006 13.9 56 NNW 19 10 12.5 60 NNW 19 10 12.9 MW 7.3 15.6 0 NW 69 14:34 12.3 61 NNW 20 1006 14.6 50 NNW 35 10 10.3 1 NNW 57 22:11 17 9 NNW 13 1005 15.8 46 NNW 19 10 10 10 10 10 10 10 10 10 10 10 10 10	10	We	8.8	15.8	0			S	48	13:42	11.9	67		SE	7	1025	14	55		WSW	17	1025
13	11	Th	4.6	16.6	0			NNW	41	21:30	6.6	84		NW	15	1027	15.8	50		NNE	13	1023
14 Su 4.2 17.2 0 NNW 56 11:52 6.6 82 NNW 17 1028 16.9 43 NNW 9 11 15 Mo 6.6 18.9 0 NW 67 12:53 15.2 47 NNW 20 1016 17.9 50 NNW 39 10 16 Tu 8.4 11.6 0.4 WSW 52 7:41 8.6 63 SW 19 1017 10.7 51 SW 11 10 17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1017 10.7 51 SW 11 10 11 10 11 11 11 11 11 11 11 11 11	12	Fr	6.6	18	0			NNW	43	5:09	11	64		NW	13	1024	16.6	39		WSW	15	1025
15	13	Sa	7.3	16.4	0			NNW	33	1:53	11	66		NW	15	1031	15.8	48		WNW	9	1029
16 Tu 8.4 11.6 0.4 WSW 52 7:41 8.6 63 SW 19 1017 10.7 51 SW 11 11 17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1029 13.8 47 NNE 11 10 18 Th 2.9 13.7 0.2 NW 39 15:16 6.1 79 NNW 6 1023 12.7 55 NNW 22 10 19 Fr 5.9 11.7 0.4 WSW 28 1:20 7.3 85 NNW 9 1017 10.5 57 NNW 11 10 20 Sa 4.9 12.5 0.2 NW 50 10:23 8 70 NNW 26 1009 12.1 56 NW 24 10 21 Su 6.5 14.7 1 SW 56 3:18 7.6 75 SSW 22 1010 <t< td=""><td>14</td><td>Su</td><td>4.2</td><td>17.2</td><td>0</td><td></td><td></td><td>NNW</td><td>56</td><td>11:52</td><td>6.6</td><td>82</td><td></td><td>NNW</td><td>17</td><td>1028</td><td>16.9</td><td>43</td><td></td><td>NNW</td><td>9</td><td>1022</td></t<>	14	Su	4.2	17.2	0			NNW	56	11:52	6.6	82		NNW	17	1028	16.9	43		NNW	9	1022
17 We 3.8 14.2 0 NNW 30 3:36 5.9 80 NW 19 1029 13.8 47 NNE 11 11 11 18 Th 2.9 13.7 0.2 NW 39 15:16 6.1 79 NNW 6 1023 12.7 55 NNW 22 11 19 Fr 5.9 11.7 0.4 WSW 28 1:20 7.3 85 NNW 9 1017 10.5 57 NNW 11 10 10 12 12 12 12 13 14 15 16 14 15 15 14 15 14 15 15 16 14 15 15 16 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 14 15 16 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16	15	Мо	6.6	18.9	0			NW	67	12:53	15.2	47		NNW	20	1016	17.9	50		NNW	39	1010
18	16	Tu	8.4	11.6	0.4			WSW	52	7:41	8.6	63		SW	19	1017	10.7	51		SW	11	1022
19	17	We	3.8	14.2	0			NNW	30	3:36	5.9	80		NW	19	1029	13.8	47		NNE	11	1026
20 Sa 4.9 12.5 0.2 NW 50 10:23 8 70 NNW 26 1009 12.1 56 NW 24 10 21 Su 6.5 14.7 1 SW 56 3:18 7.6 75 SSW 22 1010 11.8 48 W 24 10 22 Mo 7.6 18.2 0.2 NNW 57 2:08 14.7 57 N 22 1016 17.2 48 NNW 22 10 23 Tu 12.7 16.3 0 NW 57 10:51 13.5 68 NW 35 1021 15.9 57 NW 28 10 24 We 12.8 19.5 0 NW 65 12:07 14.7 63 NNE 20 1017 19.1 47 NW 26 10 25 Th 11.2 15.4 1.4 NW 83 5:48 11.2 82 NW 24 1001 12.5 60 NW 19 9 10 10 10 10 10 10 10 10 10 10 10 10 10	18	Th	2.9	13.7	0.2			NW	39	15:16	6.1	79		NNW	6	1023	12.7	55		NNW	22	1018
21 Su 6.5 14.7 1 SW 56 3:18 7.6 75 SSW 22 1010 11.8 48 W 24 102 Mo 7.6 18.2 0.2 NNW 57 2:08 14.7 57 N 22 1016 17.2 48 NNW 22 102 102 102 102 102 102 102 102 102	19	Fr	5.9	11.7	0.4			WSW	28	1:20	7.3	85		NNW	9	1017	10.5	57		NNW	11	1014
22 Mo	20	Sa	4.9	12.5	0.2			NW	50	10:23	8	70		NNW	26	1009	12.1	56		NW	24	1003
23 Tu 12.7 16.3 0 NW 57 10:51 13.5 68 NW 35 1021 15.9 57 NW 28 11 24 We 12.8 19.5 0 NW 65 12:07 14.7 63 NNE 20 1017 19.1 47 NW 26 10 25 Th 11.2 15.4 1.4 NW 83 5:48 11.2 82 NW 24 1001 12.5 60 NW 19 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	21	Su	6.5	14.7	1			SW	56	3:18	7.6	75		SSW	22	1010	11.8	48		W	24	1015
24 We 12.8 19.5 0 NW 65 12:07 14.7 63 NNE 20 1017 19.1 47 NW 26 11 11.2 15.5 15.5 15.6 14.4 15.8 15.8 11.2 82 15.8 15	22	Мо	7.6	18.2	0.2			NNW	57	2:08	14.7	57		N	22	1016	17.2	48		NNW	22	1015
25 Th 11.2 15.4 1.4 NW 83 5:48 11.2 82 NW 24 1001 12.5 60 NW 19 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23	Tu	12.7	16.3	0			NW	57	10:51	13.5	68		NW	35	1021	15.9	57		NW	28	1018
26 Fr 5.6 15 7 NNW 59 20:12 9.4 65 NNW 31 1006 13.9 56 NNW 19 10 27 Sa 9.3 15.6 0 NW 69 14:34 12.3 61 NNW 20 1006 14.6 50 NNW 35 10 28 Su 10.4 15.8 0 NW 39 16:20 11 79 NW 13 1005 15.8 46 NNW 19 10 29 Mo 7.4 15.4 1 W 89 8:34 8.9 52 WSW 31 1005 10.4 49 W 22 10 30 Tu 7.3 18.4 0 NW 57 22:41 15.3 62 N 20 1007 15.4 71 N 15 10 31 We 13.1 19.5	24	We	12.8	19.5	0			NW	65	12:07	14.7	63		NNE	20	1017	19.1	47		NW	26	1012
27 Sa 9.3 15.6 0 NW 69 14:34 12.3 61 NNW 20 1006 14.6 50 NNW 35 10 28 Su 10.4 15.8 0 NW 39 16:20 11 79 NW 13 1005 15.8 46 NNW 19 10 29 Mo 7.4 15.4 1 W 89 8:34 8.9 52 WSW 31 1005 10.4 49 W 22 10 30 Tu 7.3 18.4 0 NW 57 22:41 15.3 62 N 20 1007 15.4 71 N 15 10 31 We 13.1 19.5 0.6 WNW 91 15:00 14.8 72 W 6 1001 17.4 48 WNW 52 9 Statistics for May 2023 Mean 7.1 15.5	25	Th	11.2	15.4	1.4			NW	83	5:48	11.2	82		NW	24	1001	12.5	60		NW	19	998
28 Su 10.4 15.8 0 NW 39 16:20 11 79 NW 13 1005 15.8 46 NNW 19 10 10 10 10 10 10 10 10 10 10 10 10 10	26	Fr	5.6	15	7			NNW	59	20:12	9.4	65		NNW	31	1006	13.9	56		NNW	19	1006
29 Mo 7.4 15.4 1 W 89 8:34 8.9 52 WSW 31 1005 10.4 49 W 22 11 30 Tu 7.3 18.4 0 NW 57 22:41 15:3 62 N 20 1007 15.4 71 N 15 10 31 We 13.1 19.5 0.6 WNW 91 15:00 14.8 72 W 6 1001 17.4 48 WNW 52 9 Statistics for May 2023 Mean 7.1 15.5 10.1 71 17 1015 14 55 18 10 Lowest 2 11.6 0 4.3 47 # 6 1001 8.9 39 # 9 9 Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10	27	Sa	9.3	15.6	0			NW	69	14:34	12.3	61		NNW	20	1006	14.6	50		NNW	35	1002
30 Tu 7.3 18.4 0 NW 57 22:41 15.3 62 N 20 1007 15.4 71 N 15 10 11 10 10 10 10 10 10 10 10 10 10 10	28	Su	10.4	15.8	0			NW	39	16:20	11	79		NW	13	1005	15.8	46		NNW	19	1003
31 We 13.1 19.5 0.6 WNW 91 15:00 14.8 72 W 6 1001 17.4 48 WNW 52 9 Statistics for May 2023 Mean 7.1 15.5 10.1 71 17 1015 14 55 18 10 Lowest 2 11.6 0 4.3 47 # 6 1001 8.9 39 # 9 9 Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10	29	Мо	7.4	15.4	1			W	89	8:34	8.9	52		WSW	31	1005	10.4	49		W	22	1008
Statistics for May 2023 Mean 7.1 15.5 10.1 71 17 1015 14 55 18 10 Lowest 2 11.6 0 4.3 47 # 6 1001 8.9 39 # 9 9 Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10	30	Tu	7.3	18.4	0			NW	57	22:41	15.3	62		N	20	1007	15.4	71		Ν	15	1005
Mean 7.1 15.5 10.1 71 17 1015 14 55 18 10 Lowest 2 11.6 0 4.3 47 # 6 1001 8.9 39 # 9 9 Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10	31	We	13.1	19.5	0.6			WNW	91	15:00	14.8	72		W	6	1001	17.4	48		WNW	52	994
Lowest 2 11.6 0 4.3 47 # 6 1001 8.9 39 # 9 9 Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10										Stati	stics fo	r May	2023									
Highest 13.1 19.5 7 WNW 91 15.3 95 NW 35 1031 19.1 83 WNW 52 10	Me	an	7.1	15.5							10.1	71			17	1015	14	55			18	1014
	Low	est	2	11.6	0						4.3	47		#	6	1001	8.9	39		#	9	994
Total 22.2	High	nest	13.1	19.5	7			WNW	91		15.3	95		NW	35	1031	19.1	83		WNW	52	1029
1 Old EE.E	То	tal			22.2																	

IDCJDW7021.202305 Prepared at 16:03 UTC on Sunday 2 July 2023

Site name: HOBART AIRPORT WEST Site number: 094008 Latitude: 42.83 °S Longitude: 147.50 °E Elevation: 4 m

Page: 97 of 98

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office) 26 Redland Drive Mitcham

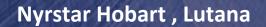
VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA


PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Emission Testing Report

Round 2 – November & December 2023

Report R014090

Accredited for compliance with ISO/IEC 17025 - Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection repor

Report No.: R014090 Date: 4/01/2024 Page: 2 of 33

Ektimo

Document Information

Client Name: Nyrstar Hobart

Report Number: R014090

Date of Issue: 4 January 2024

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Glenn Trenear Senior Air Monitoring Consultant NATA Accredited Laboratory No. 14601

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart . The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Report No.: R014090 Date: 4/01/2024 Page: 3 of 33

Ektimo

Table of Contents

1	E	executive Summary	5
	1.1	Background	5
	1.2	Project Objective & Overview	
	1.3	Licence Comparison	6
2	F	Results	7
	2.1	Foreshore A	7
	2.2	Foreshore B	
	2.3	Parageothite Dryer	
	2.4	Cadmium Smelter Plant Scrubber Stack	
	2.5	Copper Sulphate Crystalliser Plant Vent Stack	
	2.6	Casting Ventilation 1 – V1	
	2.7	Casting Ventilation 2 – V2	
	2.8	Roaster Baghouse	
	2.9	Zinc Oxide Fume Debagging Station	
	2.10	Anode Casting	
		Zinc Plant 1 Baghouse – ZP1	
		2 Zinc Plant 3 Baghouse – ZP3	
		MZR Furnace Baghouse	
	2.14	MZR Dross Stack	22
3	S	Sample Plane Compliance	23
	3.1	Foreshore A	23
	3.2	Foreshore B	
	3.3	Parageothite Dryer	
	3.4	Cadmium Smelter Plant Scrubber Stack	
	3.5	Copper Sulphate Crystalliser Plant Vent Stack	
	3.6	Casting Ventilation 1 – V1	
	3.7	Casting Ventilation 2 – V2	25
	3.8	Roaster Baghouse	25
	3.9	Zinc Oxide Fume Debagging Station	25
	3.10	Anode Casting	26
	3.11	Zinc Plant 1 Baghouse – ZP1	26
	3.12	Zinc Plant 3 Baghouse – ZP3	26
	3.13	MZR Furnace Baghouse	27
	3.14	MZR Dross Stack	27
4	T	Fest Methods	28
5	C	Quality Assurance/Quality Control Information	28

Report No.: R014090 Date: 4/01/2024 Page: 4 of 33

Ektimo

6	Definitions	29
7	Appendices	30
Арр	endix A: Site Images	30
aggA	endix B: Weather Observations	31

Report No.: R014090 Date: 4/01/2024 Page: 5 of 33

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective & Overview

The objective of the project was to quantify emissions from 14 discharge points to determine compliance with Nyrstar Hobart's Environmental Licence and meet EPN reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*			
Foreshore A	14 November 2023	Total particulate matter Metals			
Foreshore B	14 November 2023	Sulfur dioxide, sulfur trioxide Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen			
Parageothite Dryer	16 November 2023				
Cadmium Smelter	15 November 2023	Total particulate matter			
Copper Sulphate Stack	5 December 2023	Metals			
Casting Ventilation 1 – V1	15 November 2023	Nitrogen oxides, carbon monoxide, carbon dioxide, oxyger			
Casting Ventilation 2 – V2					
Roaster Baghouse	16 November 2023	Total particulate matter Metals Nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, oxygen			
Zinc Oxide Fume Debagging Station	17 November 2023				
Anode Casting	15 November 2023				
Zinc Plant 1 Baghouse – ZP1		Total particulate matter Metals			
Zinc Plant 3 Baghouse – ZP3	14 November 2023	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen			
MZR Furnace Baghouse	46 Navanahan 2022				
MZR Dross Stack	16 November 2023				

 $[\]ensuremath{^{*}}$ Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in this report.

Report No.: R014090 Date: 4/01/2024 Page: 6 of 33

1.3 Licence Comparison

The following licence comparison table shows that all analytes are within the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m³	100	0.41
Farachana A (Tail Cae Carubhan) Charle	Oxides of nitrogen (as NO ₂)	g/m³	2	0.021
Foreshore A (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	<2
	Sulphur dioxide	g/m ³	7.2	0.0024
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.33
	Oxides of nitrogen (as NO ₂)	g/m³	2	0.018
Foreshore B (Tail Gas Scrubber) Stack	Particulates	mg/m³	100	<1
	Sulphur dioxide	g/m ³	7.2	0.0027
Anode Casting Plant Exhaust		g, ···		9.4
V1 Furnace Stack				<3
V2 Furnace Stack	1			<2
Zinc Dust Plant Baghouse 1 Stack				<2
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	5.8
Cadmium Smelter Plant Scrubber Stack				<1
Copper Sulphate Crystalliser Plant				<4
Roaster Baghouse	_			13
Paragoethite Dryer Baghouse				4.7
Anode Casting Plant Exhaust	_			≤0.16
V1 Furnace Stack				≤0.214
V2 Furnace Stack	_			≤0.062
Zinc Dust Plant Baghouse 1 Stack	-	2		≤0.048
Zinc Dust Plant Baghouse 3 Stack	Metals - Pb, As, Sb, Cd, Hg ⁽¹⁾	mg/m ³	5	≤0.107
Cadmium Smelter Plant Scrubber Stack				≤0.07
Copper Sulphate Crystalliser Plant	4			≤0.05
Roaster Baghouse	4			≤0.425
Paragoethite Dryer Baghouse				≤0.26
Anode Casting Plant Exhaust V1 Furnace Stack	-			<0.0009 <0.001
V1 Furnace Stack V2 Furnace Stack	-			<0.001
Zinc Dust Plant Baghouse 1 Stack				<0.0006
Zinc Dust Plant Baghouse 3 Stack	Metals - Hg	mg/m ³	1	0.0011
Cadmium Smelter Plant Scrubber Stack	Wictars Tig	mg/m	1	<0.0005
Copper Sulphate Crystalliser Plant				0.00087
Roaster Baghouse				0.003
Paragoethite Dryer Baghouse				<0.002
Anode Casting Plant Exhaust				0.0034
V1 Furnace Stack				0.031
V2 Furnace Stack	7			0.014
Zinc Dust Plant Baghouse 1 Stack				0.0022
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd	mg/m ³	1	0.0047
Cadmium Smelter Plant Scrubber Stack				0.036
Copper Sulphate Crystalliser Plant				0.011
Roaster Baghouse				0.031
Paragoethite Dryer Baghouse				0.014

⁽¹⁾ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Report No.: R014090 Date: 4/01/2024 Page: 7 of 33

2 Results

2.1 Foreshore A

14/11/2023 Date Client Nyrstar Hobart Report R014090 Stack ID Foreshore A Licence No. 7043-5 Location Hobart State **Ektimo Staff** G Trenear & T Bakas TAS **Process Conditions** Unit 5 producing 46 000 m3/hr & Unit 6 producing 96 000 m3/hr of gas through the acid stream.

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.4 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0819 & 1018		
Temperature, °C	19		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	1700		
Volumetric flow rate (wet STP), m³/min	1600		
Volumetric flow rate (dry STP), m³/min	1500		
Mass flow rate (wet basis), kg/h	120000		

Gas Analyser Results	Average
Sampling time	1000 - 1059
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	21 32
Carbon monoxide	<6 <10
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	10.3

Report No.: R014090 Date: 4/01/2024 Page: 8 of 33

Date 14/11/2023 Client Nyrstar Hobart Report R014090 Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Unit 5 producing 46 000 m3/hr & Unit 6 producing 96 000 m3/hr of gas through the acid stream.

Isokinetic Results	Results			
Samplingtime	0830-1013			
	Concentration Mass Rate mg/m³ g/min			
Antimony	<0.004 <0.006			
Arsenic	<0.002 <0.003			
Beryllium	<0.0005 <0.0007			
Cadmium	0.00077 0.0012			
Chromium	0.012 0.018			
Cobalt	<0.0007 <0.001			
Copper	0.0054 0.0082			
Lead	0.012 0.018			
Manganese	0.014 0.022			
Mercury	<0.0005 <0.0007			
Nickel	0.024 0.036			
Phosphorus	0.02 0.031			
Selenium	<0.004 <0.006			
Zinc	0.048 0.073			
Isokinetic Sampling Parameters				
Sampling time, min	100			
Isokinetic rate, %	99			

Isokinetic Results	Results
Samplingtime	1030-1213
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	<2 <2
Sulfur dioxide	2.4 3.7
Sulfur tri oxi de	0.41 0.63
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	101
Gravimetric analysis date (total particulate)	24-11-2023

Report No.: R014090 Date: 4/01/2024 Page: 9 of 33

2.2 Foreshore B

Date 14/11/2023 Client Nyrstar Hobart Report R014090 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 46 000 m3/hr & Unit 6 producing 96 000 m3/hr of gas through the acid stream.

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.4 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1019 & 1219		
Temperature, °C	20		
Velocity at sampling plane, m/s	17		
Volumetric flow rate, actual, m³/min	1900		
Volumetric flow rate (wet STP), m³/min	1700		
Volumetric flow rate (dry STP), m³/min	1700		
Mass flow rate (wet basis), kg/h	130000		

Gas Analyser Results	Average	
Sampling time	1110 - 1208	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	18 31	
Carbon monoxide	<6 <10	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	9.9	

Report No.: R014090 Date: 4/01/2024 Page: 10 of 33

Date 14/11/2023 Client Nyrstar Hobart Report R014090 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Unit 5 producing 46 000 m3/hr & Unit 6 producing 96 000 m3/hr of gas through the acid stream.

Isokinetic Results		Results		
Sar	mpling time	1030-1213		
		Concentration mg/m³	Mass Rate g/min	
Antimony		<0.003	<0.005	
Arsenic		<0.002	<0.003	
Beryllium		<0.0004	<0.0007	
Cadmium		0.0013	0.0021	
Chromium		0.0094	0.016	
Cobalt		0.00063	0.0011	
Copper		0.0012	0.002	
Lead		0.017	0.029	
Manganese		0.014	0.023	
Mercury		<0.0004	<0.0006	
Nickel		0.024	0.04	
Phosphorus		<0.01	<0.02	
Selenium		<0.003	<0.005	
Zinc		0.056	0.095	
Isokinetic Sampling Parameters				
Sampling time, min		100		
Isokinetic rate, %		100		

Isokinetic Results	Results	
Samplingtime	0830-1013	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	<1 <2	
Sulfur dioxide	2.7 4.6	
Sulfur trioxide	0.33 0.57	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	98	
Gravimetric analysis date (total particulate)	24-11-2023	

Report No.: R014090 Date: 4/01/2024 Page: 11 of 33

2.3 Parageothite Dryer

Date	16/11/2023	Client	Nyrstar Hobart
Report	R014090	Stack ID	Parageothite Dryer
Licence No.	7043-5	Location	Hobart
Ektimo Staff	G Trenear & T Bakas	State	TAS

Ektimo StaffG Trenear & T BakasStateTASProcess Conditions8 m3/hr of dirt and 2.75 m3/hr of bypass flow into the drum.

231018

Stack Parameters			
Moisture content, %v/v	23		
Gas molecular weight, g/g mole	26.7 (wet)	29.3 (dry)	
Gas density at STP, kg/m³	1.19 (wet)	1.31 (dry)	
Gas density at discharge conditions, kg/m³	0.86		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1222 & 1341		
Temperature, °C	104		
Velocity at sampling plane, m/s	9.8		
Volumetric flow rate, actual, m³/min	420		
Volumetric flow rate (wet STP), m³/min	300		
Volumetric flow rate (dry STP), m³/min	230		
Mass flow rate (wet basis), kg/h	22000		

Gas Analyser Results		Average	
	Sampling time	1237 -	1306
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		59	14
Carbon monoxide		<6	<1
		Concentration %v/v	
Carbon dioxide		3.7	
Oxygen		14.7	

Isokinetic Results	Results
Sampling time	1230-1332
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	4.7 1.1
Antimony	<0.006 <0.001
Arsenic	0.0095 0.0022
Beryllium	<0.001 <0.0002
Cadmium	0.014 0.0033
Chromium	0.0092 0.0021
Cobalt	<0.001 <0.0003
Copper	0.013 0.0031
Lead	0.23 0.053
Manganese	0.11 0.025
Mercury	<0.002 <0.0004
Nickel	0.0068 0.0016
Phosphorus	<0.05 <0.01
Selenium	<0.009 <0.002
Zinc	1.4 0.34
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	91
Gravimetric analysis date (total particulate)	24-11-2023

Report No.: R014090 Date: 4/01/2024 Page: 12 of 33

2.4 Cadmium Smelter Plant Scrubber Stack

Date	15/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	Cadmium Smelter Outlet	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Active melting			231018

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1055 & 1209		
Temperature, °C	23		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	140		
Volumetric flow rate (wet STP), m³/min	130		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/h	10000		

Gas Analyser Results		Average	
S	ampling time	1111 -	1210
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.5
Carbon monoxide		<6	<0.8
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.7	

Isokinetic Results	Results		
Sampling time	1105-1207		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	<1 <0.2		
Antimony	<0.004 <0.0005		
Arsenic	<0.002 <0.0003		
Beryllium	<0.0005 <0.00006		
Cadmium	0.036 0.0046		
Chromium	0.0064 0.0008		
Cobalt	<0.0007 <0.00008		
Copper	<0.0007 <0.00008		
Lead	0.03 0.0037		
Manganese	0.12 0.015		
Mercury	<0.0005 <0.00006		
Nickel	0.014 0.0017		
Phosphorus	<0.02 <0.002		
Selenium	<0.004 <0.0005		
Zinc	0.64 0.081		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	99		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 13 of 33

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date5/12/2023ClientNyrstar HobartReportR014090Stack IDCopper Sulphate Stack

Licence No.7043-5LocationHobartEktimo StaffM Hutton & L FryStateTAS

Process Conditions Production rate - 5.6 tonnes/day, Dryer Outlet Temperature - 50.8 deg C, Feed rate into

Dryer - 30%

231018

Stack Parameters			
Moisture content, %v/v	10		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.24 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1550 & 1700		
Temperature, °C	50		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	190		
Volumetric flow rate (wet STP), m³/min	160		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	12000		

Gas Analyser Results		Average	
Sa	mpling time	1557 -	1656
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.6
Carbon monoxide		<6	<0.9
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxyge n		20.9	

Isokinetic Results	Results			
Samplingtime	1555-1656			
	Concentration Mass Rate			
Total particulate matter	mg/m³ g/min <4 <0.5			
Antimony	<0.007 <0.001			
Arsenic	<0.004 <0.0006			
Beryllium	<0.0009 <0.0001			
Cadmium	0.011 0.0015			
Chromium	0.012 0.0017			
Cobalt	<0.001 <0.0002			
Copper	0.005 0.00072			
Lead	0.036 0.0052			
Manganese	0.061 0.0087			
Mercury	0.00087 0.00013			
Nickel	0.07 0.01			
Phosphorus	0.032 0.0046			
Selenium	<0.007 <0.001			
Zinc	0.57 0.082			
Isokinetic Sampling Parameters				
Sampling time, min	60			
Isokinetic rate, %	99			
Gravimetric analysis date (total particulate)	12-12-2023			

Report No.: R014090 Date: 4/01/2024 Page: 14 of 33

2.6 Casting Ventilation 1 – V1

Date	15/11/2023		Client	Nyrstar Hobart	
Report	R014090		Stack ID	Casting Ventilation 1 - V1	
Licence No.	7043-5		Location	Hobart	
Ektimo Staff	G Trenear & T Bakas		State	TAS	
Process Conditions	Casting area in normal operation	on.			231018
Stack Parameters					
Moisture content, %v	/v	1.7			
Gas molecular weigh	t, g/g mole	28.8 (wet)		29.0 (dry)	
Gas density at STP, kg	g/m³	1.29 (wet)		1.29 (dry)	

Gas Flow Parameters	
Flow measurement time(s) (hhmm)	1505 & 1621
Temperature, °C	30
Velocity at sampling plane, m/s	27
Volumetric flow rate, actual, m³/min	510
Male and the first state of the CTD) and first	460

Volumetric flow rate (wet STP), m³/min460Volumetric flow rate (dry STP), m³/min450Mass flow rate (wet basis), kg/h35000

Gas Analyser Results		Average	
Samplingti	Sampling time	1519 -	1548
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<2
Carbon monoxide		<6	<3
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results		
Sampling time	1515-1615		
	Concentration Mass Rate		
	mg/m³ g/min		
Total particulate matter	<3 <1		
Antimony	<0.008 <0.004		
Arsenic	<0.004 <0.002		
Beryllium	<0.001 <0.0005		
Cadmium	0.031 0.014		
Chromium	0.0054 0.0024		
Cobalt	<0.001 <0.0006		
Copper	<0.002 <0.0008		
Lead	0.17 0.077		
Manganese	0.43 0.19		
Mercury	<0.001 <0.0005		
Nickel	0.0093 0.0042		
Phosphorus	0.052 0.023		
Selenium	<0.008 <0.004		
Zinc	1.8 0.81		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Is okinetic rate, %	102		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 15 of 33

2.7 Casting Ventilation 2 – V2

Date	15/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	Casting Ventilation 2 - V2	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Casting area in normal operation.			231018

Stack Parameters			
Moisture content, %v/v	1.4		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1507 & 1623		
Temperature, °C	53		
Velocity at sampling plane, m/s	25		
Volumetric flow rate, actual, m³/min	410		
Volumetric flow rate (wet STP), m³/min	340		
Volumetric flow rate (dry STP), m³/min	340		
Mass flow rate (wet basis), kg/h	27000		

Gas Analyser Results		Average	
Sam	olingtime	1550 -	1619
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<1
Carbon monoxide		32	11
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.7	

Isokinetic Results	Results
Sampling time	1515-1615
	Concentration Mass Rate mg/m³ g/min
	•
Total particulate matter	<2 <0.5
Antimony	<0.004 <0.001
Arsenic	<0.002 <0.0007
Beryllium	<0.0005 <0.0002
Cadmium	0.014 0.0046
Chromium	0.0022 0.00075
Cobalt	<0.0007 <0.0002
Copper	<0.0007 <0.0002
Lead	0.042 0.014
Manganese	0.07 0.024
Mercury	<0.0005 <0.0002
Nickel	0.0026 0.00087
Phosphorus	<0.02 <0.006
Selenium	<0.004 <0.001
Zinc	0.48 0.16
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	99
Gravimetric analysis date (total particulate)	24-11-2023

Report No.: R014090 Date: 4/01/2024 Page: 16 of 33

Ektimo

2.8 Roaster Baghouse

Date	16/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	Roaster Baghouse	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Roaster 6 - 45 t/hr, Roaster 5 - 18 t/hr (Convey	or all in opera	tion), fumes were on.	231018

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1408 & 1531		
Temperature, °C	28		
Velocity at sampling plane, m/s	4.5		
Volumetric flow rate, actual, m³/min	32		
Volumetric flow rate (wet STP), m³/min	29		
Volumetric flow rate (dry STP), m³/min	28		
Mass flow rate (wet basis), kg/h	2200		

Gas Analyser Results		Average	
Sa	impling time	1422 -	1506
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.1
Sulfur dioxide		5.9	0.17
Carbon monoxide		<6	<0.2
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results	
Sampling time	1415-1521	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	13 0.37	
Antimony	<0.005 <0.0001	
Arsenic	0.0069 0.00019	
Beryllium	<0.0007 <0.00002	
Cadmium	0.031 0.00086	
Chromium	0.0069 0.00019	
Cobalt	0.00087 0.000024	
Copper	0.025 0.00071	
Lead	0.38 0.011	
Manganese	0.14 0.0039	
Mercury	0.003 0.000083	
Nickel	0.0076 0.00021	
Phosphorus	0.03 0.00085	
Selenium	<0.005 <0.0001	
Zinc	5 0.14	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	99	
Gravimetric analysis date (total particulate)	24-11-2023	

Report No.: R014090 Date: 4/01/2024 Page: 17 of 33

2.9 Zinc Oxide Fume Debagging Station

Date 17/11/2023 Client Nyrstar Hobart Report R014090 Stack ID Zinc Oxide Fume Debagging Station Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas TAS State **Process Conditions** Fume unloading for duration of test.

Comments

This is a batch process which shuts down at the end of the run. No afterflows were recorded.

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0843		
Temperature, °C	20		
Velocity at sampling plane, m/s	4.8		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	13		
Mass flow rate (wet basis), kg/h	1000		

Gas Analyser Results	Average	
Sampling time	0845 - 0914	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.05	
Sulfur dioxide	<6 <0.07	
Carbon monoxide	<6 <0.08	
	Concentration %v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Isokinetic Results	Resu	lts	
Sampling time	0844-0916		
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	<4	<0.05	
Antimony	<0.01	<0.0001	
Arsenic	<0.007	<0.00009	
Beryllium	<0.002	<0.00002	
Cadmium	0.0061	0.000078	
Chromium	0.0024	0.000031	
Cobalt	<0.002	<0.00002	
Copper	<0.002	<0.00002	
Lead	0.12	0.0016	
Manganese	0.062	0.0008	
Mercury	<0.001	<0.00002	
Nickel	0.0058	0.000075	
Phosphorus	<0.05	<0.0006	
Selenium	<0.01	<0.0001	
Zinc	1.3	0.016	
Isokinetic Sampling Parameters			
Sampling time, min	32		
Isokinetic rate, %	109		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 18 of 33

2.10 Anode Casting

Date	15/11/2023	Client	Nyrstar Hobart
Report	R014090	Stack ID	Anode Casting
Licence No.	7043-5	Location	Hobart
Ektimo Staff	G Trenear & T Bakas	State	TAS
Process Conditions	Casting area in normal operation.		231018

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0751 & 0911		
Temperature, °C	20		
Velocity at sampling plane, m/s	6		
Volumetric flow rate, actual, m³/min	57		
Volumetric flow rate (wet STP), m³/min	53		
Volumetric flow rate (dry STP), m³/min	52		
Mass flow rate (wet basis), kg/h	4100		

Gas Analyser Results	Average
Sampling t	ime 0815 - 0844
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	<4 <0.2
Carbon monoxide	<6 <0.3
	Concentration %v/v
Carbon dioxide	<0.4
Oxygen	20.9

Isokinetic Results	Results
Samplingtime	0800-0900
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	9.4 0.49
Antimony	<0.005 <0.0003
Arsenic	<0.002 <0.0001
Beryllium	<0.0007 <0.00004
Cadmium	0.0034 0.00018
Chromium	0.0095 0.0005
Cobalt	<0.0009 <0.00005
Copper	0.0051 0.00027
Lead	0.15 0.008
Manganese	0.061 0.0032
Mercury	<0.0009 <0.00005
Nickel	0.012 0.00065
Phosphorus	<0.02 <0.001
Selenium	<0.005 <0.0003
Zinc	0.34 0.018
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	100
Gravimetric analysis date (total particulate)	24-11-2023

Report No.: R014090 Date: 4/01/2024 Page: 19 of 33

2.11 Zinc Plant 1 Baghouse – ZP1

Date	14/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	Zinc Plant 1 Baghouse - ZP 1	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Normal production in Zinc Plant 1 area			231018

Stack Parameters			
Moisture content, %v/v	2.3		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.12		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1420 & 1538		
Temperature, °C	42		
Velocity at sampling plane, m/s	6.7		
Volumetric flow rate, actual, m³/min	79		
Volumetric flow rate (wet STP), m³/min	69		
Volumetric flow rate (dry STP), m³/min	67		
Mass flow rate (wet basis), kg/h	5300		

Gas Analyser Results		Average	
S	ampling time	1508 -	1538
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.3
Carbon monoxide		<6	<0.4
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results		
Samplingtime	1430-1533		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	<2 <0.1		
Antimony	<0.005 <0.0004		
Arsenic	<0.003 <0.0002		
Beryllium	<0.0007 <0.00005		
Cadmium	0.0022 0.00014		
Chromium	0.0018 0.00012		
Cobalt	<0.0009 <0.00006		
Copper	<0.0009 <0.00006		
Lead	0.038 0.0025		
Manganese	0.048 0.0032		
Mercury	<0.0006 <0.00004		
Nickel	0.0078		
Phosphorus	<0.03 <0.002		
Selenium	<0.005 <0.0004		
Zinc	0.72 0.048		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	101		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 20 of 33

2.12 Zinc Plant 3 Baghouse – ZP3

Date	14/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	Zinc Plant 3 Baghouse - ZP 3	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Normal production in Zinc Plant 3 area.			231018

Stack Parameters			
Moisture content, %v/v	2.8		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.04		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1351 & 1514		
Temperature, °C	62		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	56		
Volumetric flow rate (wet STP), m³/min	45		
Volumetric flow rate (dry STP), m³/min	44		
Mass flow rate (wet basis), kg/h	3500		

Gas Analyser Results		Average	
	Sampling time	1405 - 1435	
Combustion Gases		Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)		<4 <0.2	
Carbon monoxide		<6 <0.3	
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results		
Sampling time	1400-1507		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	5.8 0.26		
Antimony	<0.007 <0.0003		
Arsenic	<0.003 <0.0001		
Beryllium	<0.0009 <0.00004		
Cadmium	0.0047 0.00021		
Chromium	0.017 0.00077		
Cobalt	0.0013		
Copper	0.0025 0.00011		
Lead	0.092 0.0041		
Manganese	0.1 0.0046		
Mercury	0.0011 0.000047		
Nickel	0.048 0.0021		
Phosphorus	<0.03 <0.001		
Selenium	<0.007 <0.0003		
Zinc	3.9 0.17		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	102		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 21 of 33

2.13 MZR Furnace Baghouse

Date	16/11/2023	Client	Nyrstar Hobart
Report	R014090	Stack ID	MZR Furnace
Licence No.	7043-5	Location	Hobart
Ektimo Staff	G Trenear & T Bakas	State	TAS
Process Conditions	MZR Furnace in operation.		231018

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0834 & 0953		
Temperature, °C	51		
Velocity at sampling plane, m/s	5.5		
Volumetric flow rate, actual, m³/min	65		
Volumetric flow rate (wet STP), m³/min	53		
Volumetric flow rate (dry STP), m³/min	52		
Mass flow rate (wet basis), kg/h	4100		

Gas Analyser Results	Average	
Sampling ti	me 0838 - 0907	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	8.6 0.45	
Sulfur dioxide	10 0.52	
Carbon monoxide	16 0.84	
	Concentration %v/v	
Carbon dioxide	0.9	
Oxygen	19.5	

Isokinetic Results	Results		
Sampling time	0842-0949		
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	<2	<0.1	
Antimony	<0.007	<0.0003	
Arsenic	<0.003	<0.0002	
Beryllium	<0.0008	<0.00004	
Cadmium	0.011	0.00058	
Chromium	0.0041	0.00021	
Cobalt	<0.001	<0.00006	
Copper	<0.001	<0.00006	
Lead	0.095	0.005	
Manganese	0.19	0.0099	
Mercury	<0.0009	<0.00005	
Nickel	0.0057	0.0003	
Phosphorus	0.029	0.0015	
Selenium	<0.007	<0.0003	
Zinc	1.1	0.057	
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	101		
Gravimetric analysis date (total particulate)	24-11-2023		

Report No.: R014090 Date: 4/01/2024 Page: 22 of 33

2.14 MZR Dross Stack

Date	16/11/2023	Client	Nyrstar Hobart	
Report	R014090	Stack ID	MZR Dross Stack	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	MZR Furnace in operation.			231018

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	2.4		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.14		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0840		
Temperature, °C	23		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Gas Analyser Results		Average	
	Samplingtime	0911-0939	
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.6
Carbon monoxide		<6	<0.9
		Concentration %v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results			
Sampling time	0838-0945			
	Concentration Mass Rate mg/m³ g/min			
Total particulate matter	<2 <0.3			
Antimony	<0.007 <0.0009			
Arsenic	<0.003 <0.0004			
Beryllium	<0.0009 <0.0001			
Cadmium	0.0099 0.0014			
Chromium	0.0036 0.00051			
Cobalt	<0.001 <0.0002			
Copper	<0.001 <0.0002			
Lead	0.037 0.0052			
Manganese	0.072 0.01			
Mercury	<0.0008 <0.0001			
Nickel	0.0041 0.00059			
Phosphorus	<0.03 <0.004			
Selenium	<0.007 <0.0009			
Zinc	0.83 0.12			
Isokinetic Sampling Parameters				
Sampling time, min	64			
Isokinetic rate, %	98			
Gravimetric analysis date (total particulate)	24-11-2023			

Report No.: R014090 Date: 4/01/2024 Page: 23 of 33

3 Sample Plane Compliance

3.1 Foreshore A

Sampling Plane Details

Sampling plane dimensions
Sampling plane area
Sampling port size, number & depth
Duct orientation & shape
Downstream disturbance
Upstream disturbance
No. traverses & points sampled

Sample plane conformance to AS 4323.1

1530 mm
1.84 m²
4" Flange (x2), 150 mm
Vertical Circular
Bend 1 D
Centrifugal fan 3 D

2 20 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.2 Foreshore B

Sampling Plane Details

Sampling plane dimensions
Sampling plane area
Sampling port size, number & depth
Duct orientation & shape
Downstream disturbance
Upstream disturbance
No. traverses & points sampled
Sample plane conformance to AS 4323.1

1530 mm
1.84 m²
4" Flange (x2), 150 mm
Vertical Circular
Bend 1 D
Centrifugal fan 3 D

2 20 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.3 Parageothite Dryer

Sampling Plane Details

Sampling plane dimensions 950 mm 0.709 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D 2 12 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

Report No.: R014090 Date: 4/01/2024 Page: 24 of 33

Ektimo

3.4 Cadmium Smelter Plant Scrubber Stack

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Change in diameter 2 D

No. traverses & points sampled 2 12
Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.5 Copper Sulphate Crystalliser Plant Vent Stack

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Bend 4D No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.6 Casting Ventilation 1 – V1

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Centrifugal fan 2D Upstream disturbance No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Report No.: R014090 Date: 4/01/2024 Page: 25 of 33

3.7 Casting Ventilation 2 – V2

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.278 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Exit 2 D

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled

1 6

Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.8 Roaster Baghouse

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

3.9 Zinc Oxide Fume Debagging Station

Sampling Plane Details

Sampling plane dimensions 250 mm Sampling plane area 0.0491 m² Sampling port size, number 3" Flange (x4) Duct orientation & shape Vertical Circular Downstream disturbance Cowl >2 D Upstream disturbance Bend >6 D No. traverses & points sampled 2 4 Sample plane conformance to AS 4323.1 Ideal sampling plane

Report No.: R014090 Date: 4/01/2024 Page: 26 of 33

3.10 Anode Casting

Sampling Plane Details

Sampling plane dimensions 450 mm Sampling plane area 0.159 m² Sampling port size, number 4" Flange (x1) Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.11 Zinc Plant 1 Baghouse – ZP1

Sampling Plane Details

Sampling plane dimensions 390 x 500 mm 0.195 m² Sampling plane area Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Bend >6 D Upstream disturbance 3 6 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.12 Zinc Plant 3 Baghouse - ZP3

Sampling Plane Details

Sampling plane dimensions 285 mm Sampling plane area 0.0638 m² Sampling port size, number 2" Holes (x2) Duct orientation & shape Horizontal Circular Downstream disturbance Bend 1D Upstream disturbance Bend 4D No. traverses & points sampled 2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Report No.: R014090 Date: 4/01/2024 Page: 27 of 33

3.13 MZR Furnace Baghouse

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

Bend 2 D

Upstream disturbance

Bend 6 D

No. traverses & points sampled

2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

3.14 MZR Dross Stack

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Duct orientation & shape Vertical Circular Bend >2 D Downstream disturbance Junction >6 D Upstream disturbance No. traverses & points sampled 2 8 Sample plane conformance to AS 4323.1 Ideal sampling plane

Report No.: R014090 Date: 4/01/2024 Page: 28 of 33

4 Test Methods

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling method	Analysis method	Uncertainty*	NATA accredited	
				Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	✓**
Total (gaseous & particulate) metals (As, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, P, Pb, Sb, Se, Zn)	USEPA Method 29	Envirolab in-house methods Metals- 020/021/022	15%	✓	√ ‡
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	√ †
					271123

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

5 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

 $^{^\}dagger$ Analysis performed by Ektimo. Results were reported to Ektimo on LV-005155 in report 27 November 2023.

 $^{^{\}dagger\dagger}$ Gravimetric analysis conducted at the Ektimo VIC laboratory

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on: 05 December 2023 in report 338843.

²¹ December 2023 in report 340188.

¹ Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

Report No.: R014090 Date: 4/01/2024 Page: 29 of 33

6 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry basis

ApproximatelyLess thanGreater than

≥ Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water.

AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half

of the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the $D_{50}\,\text{of}$ that cyclone and less than the $D_{50}\,\text{of}$ the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red.

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate
I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required.

OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Ektimo

7 Appendices

Appendix A: Site Images

Foreshore A

Foreshore B

Parageothite Dryer

Cadmium Smelter Plant Scrubber Stack

Copper Sulphate Crystalliser Plant Vent Stack

Casting Ventilation 1 – V1

Casting Ventilation 2 – V2

Roaster Baghouse

Anode Casting

Zinc Plant 1 Baghouse – ZP1

Zinc Plant 3 Baghouse – ZP3

MZR Furnace Stack

Report No.: R014090 **Date:** 4/01/2024

Ektimo

MZR Dross Stack

Appendix B: Weather Observations

Hobart – November and December 2023

		Ter	nps				Max	wind	gust			9:00	AM					3:00	PM		
Date	Day	Min	Max	Rain	Evap	Sun	Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	km	ı/h	local	°C	%	8 th	km	ı/h	hPa	°C	%	8 th	km	/h	hPa
14	Tu	11.5	17.6	0.2			NNW	48	0:43	15.8	38		SSW	17	1014	15.7	51		ESE	22	1013
15	We	10.3	20.3	0			NNW	48	22:39	12	55		NE	9	1014	16.6	51		SE	28	1009
16	Th	9.8	15.9	0						12.4	46		SSW	19	1010	13.8	43		WSW	28	1011
17	Fr	6.8	22.8	0.4			NW	46	12:17	14	54		NNW	24	1016	20.6	39		NW	24	1014
								,	Statisti	cs for N	lovem	ber 202	23								
	Mean	10.5	19							14.5	64			14	1019	17.1	56			22	1017
	Lowest	5.2	13.3	0						11	38		#	4	1005	11.9	29		S	6	1009
I	Highest	14.8	27.2	13.8			${\sf WSW}$	72		19.7	91		SSE	28	1031	23	91		SE	33	1029
	Total			27.4																	

		Ter	nps				Max	wind g	gust			9:00	AM					3:00	PM		
Date	Day	Min	Max	Rain	Evap	Sun	Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	km	/h	local	°C	%	8 th	km	ı/h	hPa	°C	%	8 th	km	ı/h	hPa
5	Tu	13	22.3	0			WNW	74	18:40	18	67		ESE	13	1010	21	60		ESE	19	1006
							Sta	tistics	for the	first 8	days o	f Dece	mber 2	023							
	Mean	11.9	22							16.5	61			12	1014	20.3	50			16	1012
	Lowest	11	19.1	0						14.9	41		W	4	1010	17.7	29		S	9	1006
	Highest	13.1	24.9	8.0			WNW	74		18	75		NNW	20	1019	22.9	62		SE	26	1018
	Total			1.4																	

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Nyrstar Hobart, Lutana

Emission Testing Report
Round 1 – May/June 2024

Report R016327

ektimo.com.au

NATA

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the

equivalence of testing, calibration, and inspection reports.

Report No.: R016327 Date: 26/07/2024 Page: 2 of 84

Ektimo

Document Information

Client Name: Nyrstar Hobart

Report Number: R016327

Date of Issue: 26 July 2024

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Glenn Trenear Senior Air Monitoring

Consultant

lac-MRA

NATA Accredited Laboratory
No. 14601

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Report No.: R016327 Date: 26/07/2024 Page: 3 of 84

Ektimo

Table of Contents

1		Executive Summary	4
	1.1	Background	4
	1.2	Project Objective & Overview	4
	1.3	Licence Comparison	5
2		Results	6
	2.1	Foreshore A	6
	2.2	Foreshore B	11
	2.3	Parageothite Dryer	16
	2.4	Cadmium Smelter Plant Scrubber Stack	21
	2.5	Copper Sulphate Crystalliser Plant Vent Stack	26
	2.6	Casting Ventilation 1 – V1	31
	2.7	Casting Ventilation 2 – V2	36
	2.8	Roaster Baghouse	41
	2.9	Zinc Oxide Debagging Station	46
	2.10	0 Anode Casting	51
	2.13	1 Zinc Plant 1 Baghouse – ZP1	56
	2.12	2 Zinc Plant 3 Baghouse – ZP3	61
	2.13	3 MZR Furnace Baghouse	66
	2.14	4 MZR Dross Stack	71
3		Sample Plane Compliance	76
	3.1	Foreshore A	76
	3.2	Foreshore B	76
	3.3	Parageothite Dryer	76
	3.4	Cadmium Smelter Plant Scrubber Stack	77
	3.5	Copper Sulphate Crystalliser Plant Vent Stack	77
	3.6	Casting Ventilation 1 – V1	77
	3.7	Casting Ventilation 2 – V2	78
	3.8	Roaster Baghouse	78
	3.9	Zinc Oxide Debagging Station	78
	3.10	0 Anode Casting	79
	3.13	1 Zinc Plant 1 Baghouse – ZP1	79
	3.12	2 Zinc Plant 3 Baghouse – ZP3	79
	3.13	3 MZR Furnace Baghouse	80
	3.14	4 MZR Dross Stack	80
4		Plant Operating Conditions	80
5		Test Methods	81
6		Quality Assurance/Quality Control Information	
7		Definitions	
8		Appendices	
٠		· PP	

Appendix A: Site Images

Appendix B: Weather Observations

Report No.: R016327 Date: 26/07/2024 Page: 4 of 84

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective & Overview

The objective of the project was to conduct a monitoring programme to quantify emissions from **14** discharge points to determine compliance with Nyrstar Hobart 's Environmental Licence and meet NPI reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*				
Foreshore A	4 1 2024	Total particulate matter Fine particulate matter ($PM_{10} \& PM_{2.5}$ via particle sizing analysis) Polycyclic aromatic hydrocarbons ($PAHs$) Metals				
Foreshore B	4 June 2024	Sulfur dioxide, sulfur trioxide Total fluoride Nitrogen oxides, nitrous oxide, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)				
Parageothite Dryer	28 May 2024	Total particulate matter				
Cadmium Smelter Plant Scrubber Stack	3 June 2024	Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs)				
Copper Sulphate Stack Crystalliser Plant Vent Stack	28 May 2024	Metals Total fluoride Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, sulfur dioxide				
Casting Ventilation 1 – V1	27 May 2024					
Casting Ventilation 2 – V2	27 May 2024	Total & speciated volatile organic compounds (VOCs)				
Roaster Baghouse	29 May 2024	Total particulate matter Fine particulate matter (PM ₁₀ & PM _{2.5} via particle sizing analysis) Polycyclic aromatic hydrocarbons (PAHs) Metals Total fluoride Sulfur dioxide, sulfur trioxide Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen Total & speciated volatile organic compounds (VOCs)				
Zinc Oxide Debagging Station	31 May 2024	Total particulate matter				
Anode Casting	29 May 2024	Fine particulate matter (PM $_{10}$ & PM $_{2.5}$ via particle sizing analysis)				
Zinc Plant 1 Baghouse – ZP1	30 May 2024	Polycyclic aromatic hydrocarbons (PAHs)				
Zinc Plant 3 Baghouse – ZP3	30 May 2024	Metals Total fluoride				
MZR Furnace Baghouse	30 May 2024	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen, sulfur dioxide				
MZR Dross Stack	3 June 2024	Total & speciated volatile organic compounds (VOCs)				

 $[\]ensuremath{^{*}}$ Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Report No.: R016327 Date: 26/07/2024 Page: 5 of 84

Plant operating conditions have been noted in this report. There was insufficient particulate matter collected on the total particulate matter tests that recorded below detection results, subsequently not enough dust was collected to perform accurate particle size analysis. In these instances, the PM_{10} and $PM_{2.5}$ are assumed to be less than the reported detection limit result for the total particulate matter test.

1.3 Licence Comparison

The following licence comparison table shows any analytes highlighted in orange are outside the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.74
Foreshore A (Tail Cas Scrubber) Stack	Oxides of nitrogen (as NO ₂)	g/m³	2	0.015
Foreshore A (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	<2
	Sulphur dioxide	g/m³	7.2	0.057
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	0.36
	Oxides of nitrogen (as NO ₂)	g/m³	2	0.01
Foreshore B (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	<1
	Sulphur dioxide	g/m ³	7.2	0.055
Anode Casting Plant Exhaust		8,		7.1
V1 Furnace Stack	7			<2
V2 Furnace Stack				<3
Zinc Dust Plant Baghouse 1 Stack	7			5.6
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	8.7
Cadmium Smelter Plant Scrubber Stack	1	<i>J</i> ,		5.7
Copper Sulphate Crystalliser Plant	1			5.8
Roaster Baghouse	7			<2
Paragoethite Dryer Baghouse	1			<3
Anode Casting Plant Exhaust				≤0.25
V1 Furnace Stack	1			≤0.02
V2 Furnace Stack	7			≤0.028
Zinc Dust Plant Baghouse 1 Stack	1			≤0.24
Zinc Dust Plant Baghouse 3 Stack	Metals - Pb, As, Sb, Cd, Hg (1)	mg/m ³	5	≤0.15
Cadmium Smelter Plant Scrubber Stack	1			≤1.5
Copper Sulphate Crystalliser Plant	7			≤0.1
Roaster Baghouse	1			≤0.28
Paragoethite Dryer Baghouse	7			≤0.29
Anode Casting Plant Exhaust				0.0031
V1 Furnace Stack				<0.0009
V2 Furnace Stack				<0.0008
Zinc Dust Plant Baghouse 1 Stack				< 0.001
Zinc Dust Plant Baghouse 3 Stack	Metals - Hg	mg/m ³	1	<0.0009
Cadmium Smelter Plant Scrubber Stack				<0.0009
Copper Sulphate Crystalliser Plant				0.014
Roaster Baghouse				0.0014
Paragoethite Dryer Baghouse				<0.001
Anode Casting Plant Exhaust				0.082
V1 Furnace Stack				0.00089
V2 Furnace Stack	_			0.00058
Zinc Dust Plant Baghouse 1 Stack				0.022
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd	mg/m ³	1	0.0056
Cadmium Smelter Plant Scrubber Stack				1.2
Copper Sulphate Crystalliser Plant	_			0.047
Roaster Baghouse				0.026
Paragoethite Dryer Baghouse				0.082

¹ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Report No.: R016327 Date: 26/07/2024 Page: 6 of 84

2 Results

2.1 Foreshore A

Date	4/06/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Foreshore A	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Unit 5 producing 0 m3/hr (not running) & Unit 6	producing 117.000 i	m3/hr of gas through the acid stream.	240524

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.5 (wet)	28.7 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1146 & 1337		
Temperature, °C	19		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m ³ /min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Gas Analyser Results	Average
Sampling time	0827 - 0926
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	15 21
Carbon monoxide	9.3 13
	Concentration
	% v/v
Carbon dioxide	<0.4
Oxygen	11.8
Sampling time	0827 - 0926
	Concentration Mass Rate
Nitrous oxide	mg/m³ g/min
Nitrous oxide	<20 <20

Isokinetic Results	Results
Sampling t	me 1150-1332
	Concentration Mass Rate mg/m³ g/min
Total particulate matter	<2 <2
PM10 (P:	A) <2 <2
PM2.5 (P:	A) <2 <2
Sulfur dioxide	57 78
Sulfur trioxide	0.74 1
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	101
Gravimetric analysis date (total particulate)	17-06-2024

Report No.: R016327 Date: 26/07/2024 Page: 7 of 84

Date 4/06/2024 Client Nyrstar Hobart R016327 Report Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream.

Total Speciated VOCs	Results
	Concentration Mass Rate mg/m³ g/min
Total	<0.3 <0.4

VOC's C5-C20	Results
Sampling time	1230-1250
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.4
Acetone	<0.3 <0.4
Toluene	<0.3 <0.4

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, D-Limonene, Undecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 8 of 84

Date 4/06/2024 Client Nyrstar Hobart R016327 Stack ID Report Foreshore A Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream. 240524

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0801 & 0955		
Temperature, °C	18		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1300		
Mass flow rate (wet basis), kg/h	100000		

Isokinetic Results	Results
Sampling time	0810-0952
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	0.033 0.045
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	100

Report No.: R016327 **Date:** 26/07/2024 **Page:** 9 of 84

Date 4/06/2024 Client Nyrstar Hobart R016327 Report Stack ID Foreshore A Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream. 240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0955 & 1146		
Temperature, °C	18		
Velocity at sampling plane, m/s	13		
Volumetric flow rate, actual, m³/min	1400		
Volumetric flow rate (wet STP), m³/min	1300		
Volumetric flow rate (dry STP), m³/min	1300		
Mass flow rate (wet basis), kg/h	100000		

Isokinetic Results	Resu	ılts	
Sampling time	1000-1142		
	Concentration	Mass Rate	
	mg/m³	g/min	
Antimony	<0.004	<0.005	
Arsenic	<0.002	<0.003	
Beryllium	<0.0005	<0.0006	
Cadmium	0.041	0.053	
Chromium	0.0037	0.0049	
Cobalt	<0.0007	<0.0009	
Copper	0.0013	0.0017	
Lead	0.061	0.08	
Manganese	0.016	0.021	
Mercury	<0.0005	<0.0006	
Nickel	0.0072	0.0095	
Phosphorus	<0.02	<0.02	
Selenium	<0.005	<0.007	
Tin	0.0042	0.0056	
Vanadium	<0.0009	<0.001	
Zinc	0.73	0.95	
Total of Sb, As, Cd, Pb, Hg	≤0.11	≤0.14	
Isokinetic Sampling Parameters			
Sampling time, min	10	0	
Isokinetic rate, %	98	3	

Report No.: R016327 Date: 26/07/2024 Page: 10 of 84

Date 4/06/2024 Client Nyrstar Hobart Report R016327 Stack ID Foreshore A Location Licence No. 7043-5 Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.4 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1337 & 1536		
Temperature, °C	19		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Polycyclic Aromatic H	lydrocarbons	Resu	lts	
(PAHs)	Sampling time	1345 - 1527		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		1300	1800000	
2-Methylnaphthalene		100	140000	
Acenaphthylene		<10	<20000	
Acenaphthene		66	92000	
Fluorene		230	330000	
Phenanthrene		96	130000	
Anthracene		26	36000	
Fluoranthene		54	75000	
		41	57000	
Pyrene		<10	<20000	
Benz(a)anthracene				
Chrysene		25	35000	
Benzo(b)fluoranthene		<10	<20000	
Benzo(k)fluoranthene		<10	<20000	
Benzo(e)pyrene		<10	<20000	
Benzo(a)pyrene		<10	<20000	
Perylene		<10	<20000	
Indeno(1,2,3-cd)pyrene		<10	<20000	
Dibenz(ah)anthracene		<10	<20000	
Benzo(ghi)perylene		<10	<20000	
Total 16 PAHs		1800	2500000	
Total 19 PAHs		1900	2700000	
BaP-TEQ				
Lower Bound		0.25	350	
Middle Bound		11	15000	
Upper Bound		22	30000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	99%

Report No.: R016327 Date: 26/07/2024 Page: 11 of 84

2.2 Foreshore B

Date 4/06/2024 Client Nyrstar Hobart Report R016327 Stack ID Foreshore B Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** $Unit \, 5 \, producing \, 0 \, m3/hr \, (not \, running) \, \& \, Unit \, 6 \, producing \, 117,000 \, \, m3/hr \, of \, gas \, through \, the \, acid \, stream.$

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.5 (wet)	28.7 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1335 & 1530		
Temperature, °C	19		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m ³ /min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Gas Analyser Results	Average
Sampling time	0943 - 1042
Combustion Gases Nitrogen oxides (as NO ₂)	Concentration Mass Rate mg/m³ g/min 10 14
Carbon monoxide	<6 <9
	Concentration % v/v
Carbon dioxide	<0.4
Oxygen	11.9
Sampling time	0943 - 1042
Nitrous oxide	Concentration Mass Rate mg/m³ g/min
Nitrous oxide	<20 <20

sokinetic Results Results			ılts	
Sampling time	npling time	1340-1522		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<1	<2	
PM10	(PSA)	<1	<2	
PM2.5	(PSA)	<1	<2	
Sulfur dioxide		55	76	
Sulfur trioxide		0.36	0.5	
Isokinetic Sampling Parameters				
Sampling time, min		100		
Isokinetic rate, %		102		
Gravimetric analysis date (total particulate	2)	17-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 12 of 84

Date 4/06/2024 Client Nyrstar Hobart Report R016327 Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.3 <0.4		

VOC's C5-C20	Results
Sampling time	1400-1420
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.4
Acetone	<0.3 <0.4
Toluene	<0.3 <0.4

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 13 of 84

4/06/2024 Date Client Nyrstar Hobart R016327 Stack ID Report Foreshore B Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream.

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0957 & 1144		
Temperature, °C	18		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Isokinetic Results	Results
Sampling time	1000-1142
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	0.016 0.023
Isokinetic Sampling Parameters	
Sampling time, min	100
Isokinetic rate, %	98

Report No.: R016327 Date: 26/07/2024 Page: 14 of 84

Date 4/06/2024 Client Nyrstar Hobart R016327 Report Stack ID Foreshore B Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.5 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0803 & 0957		
Temperature, °C	18		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Isokinetic Results	Results		
Sampling time	0810-0952		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.003 <0.005		
Arsenic	<0.003 <0.004		
Beryllium	<0.0004 <0.0006		
Cadmium	0.077 0.11		
Chromium	0.0021 0.0029		
Cobalt	0.0011 0.0015		
Copper	0.0095 0.013		
Lead	0.074 0.1		
Manganese	0.027 0.038		
Mercury	0.00033 0.00047		
Nickel	0.011 0.016		
Phosphorus	0.017 0.024		
Selenium	<0.003 <0.005		
Tin	0.0014 0.002		
Vanadium	<0.0008 <0.001		
Zinc	1.2 1.7		
Total of Sb, As, Cd, Pb, Hg	≤0.16 ≤0.22		
Isokinetic Sampling Parameters			
Sampling time, min	100		
Isokinetic rate, %	99		

Report No.: R016327 Date: 26/07/2024 Page: 15 of 84

Date 4/06/2024 Client Nyrstar Hobart Report R016327 Stack ID Foreshore B Location Licence No. 7043-5 Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Unit 5 producing 0 m3/hr (not running) & Unit 6 producing 117,000 m3/hr of gas through the acid stream. 240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.4 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.27 (wet)	1.28 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1144 & 1335		
Temperature, °C	19		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	1500		
Volumetric flow rate (wet STP), m³/min	1400		
Volumetric flow rate (dry STP), m³/min	1400		
Mass flow rate (wet basis), kg/h	110000		

Polycyclic Aromatic Hy	rdrocarbons	Resu	ılts	
(PAHs)	Sampling time	1150 - 1332		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		770	1100000	
2-Methylnaphthalene		83	110000	
Acenaphthylene		<10	<20000	
Acenaphthene		<10	<20000	
Fluorene		<10	<20000	
Phenanthrene		42	58000	
Anthracene		<10	<20000	
Fluoranthene		50	69000	
Pyrene		57	78000	
Benz(a)anthracene		17	23000	
Chrysene		<10	<20000	
Benzo(b)fluoranthene		17	23000	
Benzo(k)fluoranthene		<10	<20000	
Benzo(e)pyrene		18	25000	
Benzo(a)pyrene		16	22000	
Perylene		<10	<20000	
Indeno(1,2,3-cd)pyrene		<10	<20000	
Dibenz(ah)anthracene		<10	<20000	
Benzo(ghi)perylene		30	42000	
Total 16 PAHs		1000	1400000	
Total 19 PAHs		1100	1500000	
BaP-TEQ				
Lower Bound		19	27000	
Middle Bound		23	32000	
Upper Bound		27	37000	
opper bound		21	37000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	100
Isokinetic rate, %	102%

Report No.: R016327 **Date:** 26/07/2024 **Page:** 16 of 84

2.3 Parageothite Dryer

Date 28/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Parageothite Dryer Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** $5.9\,m3/hr$ of dirt and $1.65\,m3/hr$ of bypass flow into the drum.

Stack Parameters			
Moisture content, %v/v	30		
Gas molecular weight, g/g mole	25.8 (wet)	29.3 (dry)	
Gas density at STP, kg/m³	1.15 (wet)	1.31 (dry)	
Gas density at discharge conditions, kg/m³	0.90		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1507 & 1620		
Temperature, °C	81		
Velocity at sampling plane, m/s	8.3		
Volumetric flow rate, actual, m³/min	350		
Volumetric flow rate (wet STP), m ³ /min	270		
Volumetric flow rate (dry STP), m³/min	190		
Mass flow rate (wet basis), kg/h	19000		

Gas Analyser Results		Average		
	Sampling time	1419 -	1518	
		Concentration	Mass Rate	
Combustion Gases		mg/m³	g/min	
Nitrogen oxides (as NO ₂)		45	8.6	
Sulfur dioxide		<6	<1	
Carbon monoxide		<6	<1	
		Concent	tration	
		% v	/v	
Carbon dioxide		3.3		
Oxygen		15.5		

Isokinetic Results		Results		
Sampling time	Sampling time	1510-2	1612	
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<3	<0.5	
PM10	(PSA)	<3	<0.5	
PM2.5	(PSA)	<3	<0.5	
Isokinetic Sampling Parameter	s			
Sampling time, min		60)	
Isokinetic rate, %		10	5	
Gravimetric analysis date (tota	l particulate)	17-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 17 of 84

Date 28/05/2024 Nyrstar Hobart Client R016327 Report Stack ID Parageothite Dryer Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** 5.9 m3/hr of dirt and 1.65 m3/hr of bypass flow into the drum.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.3 <0.05		

VOC's C5-C20	Results
Sampling time	1520-1540
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.05
Acetone	<0.3 <0.05
Toluene	<0.3 <0.05

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 18 of 84

Date 28/05/2024 Client Nyrstar Hobart Stack ID Parageothite Dryer Report R016327 Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS **Process Conditions** 5.9 m3/hr of dirt and 1.65 m3/hr of bypass flow into the drum.

Stack Parameters			
Moisture content, %v/v	25		
Gas molecular weight, g/g mole	26.4 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.18 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.91		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1335 & 1507		
Temperature, °C	81		
Velocity at sampling plane, m/s	8.1		
Volumetric flow rate, actual, m³/min	340		
Volumetric flow rate (wet STP), m ³ /min	270		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/h	19000		

Isokinetic Results	Results	
Sampling time	1400-1502	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.37 0.074	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	107	

Report No.: R016327 **Date:** 26/07/2024 **Page:** 19 of 84

Date 28/05/2024 Client Nyrstar Hobart R016327 Report Stack ID Parageothite Dryer Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** 5.9 m3/hr of dirt and 1.65 m3/hr of bypass flow into the drum.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	22		
Gas molecular weight, g/g mole	26.7 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.19 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.93		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1335 & 1507		
Temperature, °C	81		
Velocity at sampling plane, m/s	8.1		
Volumetric flow rate, actual, m³/min	340		
Volumetric flow rate (wet STP), m ³ /min	270		
Volumetric flow rate (dry STP), m³/min	210		
Mass flow rate (wet basis), kg/h	19000		

Isokinetic Results	Results		
Sampling time	1400-1502		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.006 <0.001		
Arsenic	0.007 0.0015		
Beryllium	<0.0009 <0.0002		
Cadmium	0.082 0.017		
Chromium	0.0091 0.0019		
Cobalt	0.0045 0.00094		
Copper	0.02 0.0042		
Lead	0.19 0.04		
Manganese	0.035 0.0072		
Mercury	<0.001 <0.0003		
Nickel	0.0071 0.0015		
Phosphorus	0.12 0.024		
Selenium	<0.007 <0.001		
Tin	<0.003 <0.0006		
Vanadium	<0.002 <0.0004		
Zinc	0.44 0.092		
Total of Sb, As, Cd, Pb, Hg	≤0.29 ≤0.06		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	109		

Report No.: R016327 Date: 26/07/2024 Page: 20 of 84

Ektimo

Date28/05/2024ClientNyrstar HobartReportR016327Stack IDParageothite Dryer

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions 5.9 m3/hr of dirt and 1.65 m3/hr of bypass flow into the drum.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	26		
Gas molecular weight, g/g mole	26.3 (wet)	29.2 (dry)	
Gas density at STP, kg/m³	1.17 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.91		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1507 & 1620		
Temperature, °C	81		
Velocity at sampling plane, m/s	8.2		
Volumetric flow rate, actual, m³/min	350		
Volumetric flow rate (wet STP), m³/min	270		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/h	19000		

Polycyclic Aromatic H	ydrocarbons	Resu	ilts	
(PAHs)	PAHs) Sampling time 1510 - 1612		1612	
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		90000	18000000	
2-Methylnaphthalene		440	88000	
Acenaphthylene		<20	<5000	
Acenaphthene		82	16000	
Fluorene		290	57000	
Phenanthrene		990	200000	
Anthracene		57	11000	
Fluoranthene		1800	360000	
Pyrene		220	43000	
Benz(a)anthracene		49	9800	
Chrysene		360	72000	
Benzo(b)fluoranthene		<20	<5000	
Benzo(k)fluoranthene		<20	<5000	
Benzo(e)pyrene		<20	<5000	
Benzo(a)pyrene		<20	<5000	
Perylene		<20	<5000	
Indeno(1,2,3-cd)pyrene		<20	<5000	
Dibenz(ah)anthracene		<20	<5000	
Benzo(ghi)perylene		<20	<5000	
Total 16 PAHs		93000	19000000	
Total 19 PAHs		94000	19000000	
BaP-TEQ				
Lower Bound		8.5	1700	
Middle Bound		29	5800	
Upper Bound		49	9800	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	102%

Volumetric flow rate (dry STP), m³/min

Mass flow rate (wet basis), kg/h

Report No.: R016327 Date: 26/07/2024 Page: 21 of 84

2.4 Cadmium Smelter Plant Scrubber Stack

Date 3/06/2024 Client Nyrstar Hobart Report R016327 Stack ID Cadmium Smelter Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Fume extraction while furnace in operation. Metal addition and drossing occurred during this test.

Stack Parameters Moisture content, %v/v 1.8 Gas molecular weight, g/g mole 29.0 (dry) 28.8 (wet) 1.29 (wet) Gas density at STP, kg/m³ 1.29 (dry) Gas density at discharge conditions, kg/m³ 1.20 Gas Flow Parameters 1217 & 1325 Flow measurement time(s) (hhmm) Temperature, °C 19 Velocity at sampling plane, m/s 15 Volumetric flow rate, actual, m³/min 160 Volumetric flow rate (wet STP), m³/min 150

150

11000

Gas Analyser Results		Average	
	Sampling time	1225 -	1324
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.6
Sulfur dioxide		<6	<0.8
Carbon monoxide		<6	<0.9
		Concent % v	
Carbon dioxide		<0.4	
Oxygen		20.8	

Isokinetic Results Results		ılts	
S	ampling time	1220-1322	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		5.7	0.83
PM10	(PSA)	2.4	0.35
PM2.5	(PSA)	0.62	0.09
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		100	
Gravimetric analysis date (total particula	ite)	19-06-2024	

Report No.: R016327 Date: 26/07/2024 Page: 22 of 84

Date 3/06/2024 Nyrstar Hobart Client R016327 Report Stack ID Cadmium Smelter Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Fume extraction while furnace in operation. Metal addition and drossing occurred during this test.

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.04	

VOC's C5-C20	Results	
Sampling time	1240-1300	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.04	
Toluene	<0.3 <0.04	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 23 of 84

Date 3/06/2024 Client Nyrstar Hobart R016327 Stack ID Cadmium Smelter Report Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Fume extraction while furnace in operation. Metal addition and drossing occurred during this test.

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1325 & 1436		
Temperature, °C	20		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/h	12000		

Isokinetic Results	Results	
Sampling time	1327-1429	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.073 0.011	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	97	

Report No.: R016327 Date: 26/07/2024 Page: 24 of 84

Date3/06/2024ClientNyrstar HobartReportR016327Stack IDCadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation. Metal addition and drossing occurred during this test.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1217 & 1325		
Temperature, °C	19		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m ³ /min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/h	11000		

Isokinetic Results	Results		
Sampling time	1220-1322		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.008 <0.001		
Arsenic	0.0065 0.00096		
Beryllium	<0.0009 <0.0001		
Cadmium	1.2 0.18		
Chromium	0.013 0.0019		
Cobalt	0.0016 0.00023		
Copper	0.022 0.0032		
Lead	0.29 0.042		
Manganese	0.074 0.011		
Mercury	<0.0009 <0.0001		
Nickel	0.022 0.0032		
Phosphorus	0.087 0.013		
Selenium	<0.009 <0.001		
Tin	0.015 0.0022		
Vanadium	<0.002 <0.0003		
Zinc	4.6 0.67		
Total of Sb, As, Cd, Pb, Hg	≤1.5 ≤0.22		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	101		

Report No.: R016327 Date: 26/07/2024 Page: 25 of 84

 Date
 3/06/2024
 Client
 Nyrstar Hobart

 Report
 R016327
 Stack ID
 Cadmium Smelter

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume extraction while furnace in operation. Metal addition and drossing occurred during this test.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1325 & 1436		
Temperature, °C	20		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	160		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	150		
Mass flow rate (wet basis), kg/h	12000		

Polycyclic Aromatic Hy	drocarbons	Resu	ılts	
(PAHs)	Sampling time	1327 - 1429		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		52000	7800000	
2-Methylnaphthalene		380	56000	
Acenaphthylene		180	27000	
Acenaphthene		160	23000	
Fluorene		550	82000	
Phenanthrene		200	29000	
Anthracene		6100	910000	
Fluoranthene		350	52000	
Pyrene		130	19000	
Benz(a)anthracene		<30	<4000	
Chrysene		38	5600	
Benzo(b)fluoranthene		<30	<4000	
Benzo(k)fluoranthene		<30	<4000	
Benzo(e)pyrene		<30	<4000	
Benzo(a)pyrene		<30	<4000	
Perylene		<30	<4000	
Indeno(1,2,3-cd)pyrene		<30	<4000	
Dibenz(ah)anthracene		<30	<4000	
Benzo(ghi)perylene		<30	<4000	
Total 16 PAHs		60000	8900000	
Total 19 PAHs		60000	9000000	
IOLAI 19 PARS		00000	5000000	
BaP-TEQ				
Lower Bound		0.38	56	
Middle Bound		24	3600	
Upper Bound		47	7100	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	98%

Report No.: R016327 Date: 26/07/2024 Page: 26 of 84

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date 28/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Copper Sulphate Stack Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** $Production\ rate-16.1\ tonnes/day,\ Dryer\ Outlet\ Temperature-41.5\ deg\ C,\ Feed\ rate\ into\ Dryer-35\%$

Stack Parameters			
Moisture content, %v/v	9.8		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1020 & 1135		
Temperature, °C	48		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Gas Analyser Results		Average	
	Sampling time	0918 - 1017	
		Concentration	Mass Rate
Combustion Gases		mg/m³	g/min
Nitrogen oxides (as NO ₂)		<4	<0.6
Sulfur dioxide		<6	<0.8
Carbon monoxide		<6	<0.9
		Concent	tration
		% v	/v
Carbon dioxide		<0.4	
Oxygen		20.7	

Isokinetic Results		Results	
Sar	npling time	1030-1132	
		Concentration Mass Rate mg/m³ g/min	
Total particulate matter		5.8 0.8	
PM10	(PSA)	2.4 0.33	
PM2.5	(PSA)	0.55 0.077	
Isokinetic Sampling Parameters			
Sampling time, min		60	
Isokinetic rate, %		100	
Gravimetric analysis date (total particulate	2)	18-06-2024	

Report No.: R016327 Date: 26/07/2024 Page: 27 of 84

Date 28/05/2024 Client Nyrstar Hobart R016327 Copper Sulphate Stack Report Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Production rate - 16.1 tonnes/day, Dryer Outlet Temperature - 41.5 deg C, Feed rate into Dryer - 35%

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.03	

VOC's C5-C20	Results	
Sampling time	0940-1001	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.03	
Toluene	<0.3 <0.03	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 28 of 84

Date 28/05/2024 Client Nyrstar Hobart R016327 Stack ID Report Copper Sulphate Stack Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Production rate - 16.1 tonnes/day, Dryer Outlet Temperature - 41.5 deg C, Feed rate into Dryer - 35%

Stack Parameters			
Moisture content, %v/v	9.4		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0900 & 1020		
Temperature, °C	47		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m ³ /min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Isokinetic Results	Results	
Sampling time	0915-1017	
Total fluoride (as HF)	Concentration Mass Rate mg/m³ g/min 0.33 0.045	
Isokinetic Sampling Parameters Sampling time, min	60	
Isokinetic rate, %	103	

Report No.: R016327 Date: 26/07/2024 Page: 29 of 84

Date 28/05/2024 Client Nyrstar Hobart

R016327 Report Stack ID Copper Sulphate Stack

Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Production rate - 16.1 tonnes/day, Dryer Outlet Temperature - 41.5 deg C, Feed rate into Dryer - 35%

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	9.8		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.24 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.06		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1020 & 1135		
Temperature, °C	48		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Isokinetic Results	Results		
Sampling time	1030-1132		
	Concentration mg/m³	Mass Rate g/min	
Antimony	<0.006	<0.0008	
Arsenic	<0.003	<0.0004	
Beryllium	<0.0008	<0.0001	
Cadmium	0.047	0.0065	
Chromium	0.0081	0.0011	
Cobalt	0.0029	0.0004	
Copper	0.11	0.016	
Lead	0.034	0.0047	
Manganese	0.072	0.01	
Mercury	0.014	0.0019	
Nickel	0.027	0.0038	
Phosphorus	0.13	0.017	
Selenium	0.0064	0.00089	
Tin	0.0035	0.00048	
Vanadium	<0.002	<0.0002	
Zinc	1.2	0.16	
Total of Sb, As, Cd, Pb, Hg	≤0.1	≤0.014	
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	99		

Report No.: R016327 Date: 26/07/2024 Page: 30 of 84

 Date
 28/05/2024
 Client
 Nyrstar Hobart

 Report
 R016327
 Stack ID
 Copper Sulphate Stack

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions Production rate - 16.1 tonnes/day, Dryer Outlet Temperature - 41.5 deg C, Feed rate into Dryer - 35%

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	9.4		
Gas molecular weight, g/g mole	27.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.25 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0900 & 1020		
Temperature, °C	47		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m ³ /min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	12000		

Polycyclic Aromatic I	Hydrocarbons	Resu	ılts	
(PAHs)	Sampling time	0915 - 1017		
		Concentration ng/m³	Mass Rate ng/min	
		-	=-	
Naphthalene		110000	16000000	
2-Methylnaphthalene		1700	240000	
Acenaphthylene		<30	<4000	
Acenaphthene		540	75000	
Fluorene		1000	140000	
Phenanthrene		1700	240000	
Anthracene		650	91000	
Fluoranthene		930	130000	
Pyrene		710	99000	
Benz(a)anthracene		87	12000	
Chrysene		200	29000	
Benzo(b)fluoranthene		130	19000	
Benzo(k)fluoranthene		50	7100	
Benzo(e)pyrene		77	11000	
Benzo(a)pyrene		38	5300	
Perylene		<30	<4000	
Indeno(1,2,3-cd)pyrene	!	<30	<4000	
Dibenz(ah)anthracene		<30	<4000	
Benzo(ghi)perylene		120	17000	
Total 16 PAHs		120000	17000000	
Total 19 PAHs		120000	17000000	
BaP-TEQ				
Lower Bound		67	9400	
Middle Bound		75	10000	
Upper Bound		83	12000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	98%

Report No.: R016327 Date: 26/07/2024 Page: 31 of 84

2.6 Casting Ventilation 1 – V1

Date	27/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Casting Ventilation 1 - V1	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Casting area in normal operation.			240524

Stack Parameters			
Moisture content, %v/v	0.48		
Gas molecular weight, g/g mole	29.0 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1453 & 1604		
Temperature, °C	26		
Velocity at sampling plane, m/s	26		
Volumetric flow rate, actual, m³/min	500		
Volumetric flow rate (wet STP), m³/min	460		
Volumetric flow rate (dry STP), m³/min	450		
Mass flow rate (wet basis), kg/h	35000		

Gas Analyser Results	Average		
Sampling tin	ne 1301 - 1400		
Combustion Gases	Concentration Mass Rate mg/m³ g/min		
Nitrogen oxides (as NO ₂)	<4 <2		
Sulfur dioxide	<6 <3		
Carbon monoxide	<6 <3		
	Concentration		
	% v/v		
Carbon dioxide	<0.4		
Oxygen	20.9		

Isokinetic Results	Results		
S	ampling time	1500-2	1600
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<2	<0.9
PM10	(PSA)	<2	<0.9
PM2.5	(PSA)	<2	<0.9
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		10	1
Gravimetric analysis date (total particula	ite)	17-06-	2024

Report No.: R016327 Date: 26/07/2024 Page: 32 of 84

Date 27/05/2024 Client Nyrstar Hobart Casting Ventilation 1 - V1 R016327 Report Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.3 <0.1		

VOC's C5-C20	Results
Sampling tin	ne 1510-1530
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.1
Toluene	<0.3 <0.1

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 33 of 84

Date 27/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Casting Ventilation 1 - V1 Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Stack Parameters			
Moisture content, %v/v	0.49		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1604 & 1716		
Temperature, °C	26		
Velocity at sampling plane, m/s	26		
Volumetric flow rate, actual, m³/min	500		
Volumetric flow rate (wet STP), m³/min	450		
Volumetric flow rate (dry STP), m³/min	450		
Mass flow rate (wet basis), kg/h	35000		

Isokinetic Results	Results
Sampling time	1610-1710
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	0.049 0.022
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	102

Report No.: R016327 Date: 26/07/2024 Page: 34 of 84

Date 27/05/2024 Client Nyrstar Hobart

ReportR016327Stack IDCasting Ventilation 1 - V1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

rea il Ilolliai operation. 240024

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	0.87		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1218 & 1338		
Temperature, °C	26		
Velocity at sampling plane, m/s	27		
Volumetric flow rate, actual, m³/min	510		
Volumetric flow rate (wet STP), m³/min	470		
Volumetric flow rate (dry STP), m³/min	460		
Mass flow rate (wet basis), kg/h	36000		

Isokinetic Results	Results		
Sampling time	1235-1335		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.005 <0.002		
Arsenic	<0.002 <0.001		
Beryllium	<0.0007 <0.0003		
Cadmium	0.00089 0.00041		
Chromium	0.0043 0.002		
Cobalt	<0.0009 <0.0004		
Copper	0.13 0.06		
Lead	0.011 0.005		
Manganese	0.017 0.0078		
Mercury	<0.0009 <0.0004		
Nickel	0.0059 0.0027		
Phosphorus	0.11 0.049		
Selenium	<0.006 <0.003		
Tin	<0.003 <0.001		
Vanadium	<0.001 <0.0007		
Zinc	0.75 0.35		
Total of Sb, As, Cd, Pb, Hg	≤0.02 ≤0.0094		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	100		

Report No.: R016327 Date: 26/07/2024 Page: 35 of 84

Date27/05/2024ClientNyrstar Hobart

Report R016327 Stack ID Casting Ventilation 1 - V1

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions Casting area in normal operation.

0.4050.4

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	0.64		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1338 & 1453		
Temperature, °C	26		
Velocity at sampling plane, m/s	27		
Volumetric flow rate, actual, m³/min	510		
Volumetric flow rate (wet STP), m ³ /min	460		
Volumetric flow rate (dry STP), m³/min	460		
Mass flow rate (wet basis), kg/h	36000		

Polycyclic Aromatic Hy	drocarbons	Resu	ılts	
(PAHs) Sampling time		1350 - 1450		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		130000	60000000	
2-Methylnaphthalene		550	250000	
Acenaphthylene		40	18000	
Acenaphthene		330	150000	
Fluorene		690	320000	
Phenanthrene		630	290000	
Anthracene		54	25000	
Fluoranthene		350	160000	
Pyrene		190	87000	
Benz(a)anthracene		36	17000	
Chrysene		100	46000	
Benzo(b)fluoranthene		<20	<9000	
Benzo(k)fluoranthene		<20	<9000	
Benzo(e)pyrene		<20	<9000	
Benzo(a)pyrene		<20	<9000	
Perylene		<20	<9000	
Indeno(1,2,3-cd)pyrene		<20	<9000	
Dibenz(ah)anthracene		<20	<9000	
Benzo(ghi)perylene		<20	<9000	
Total 16 PAHs		130000	61000000	
Total 19 PAHs		130000	61000000	
BaP-TEQ				
Lower Bound		4.6	2100	
Middle Bound		22	9900	
Upper Bound		39	18000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	99%

Report No.: R016327 Date: 26/07/2024 Page: 36 of 84

2.7 Casting Ventilation 2 – V2

Date	27/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Casting Ventilation 2 - V2	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Casting area in normal operation.			240524

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.12		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1220 & 1340		
Temperature, °C	41		
Velocity at sampling plane, m/s	27		
Volumetric flow rate, actual, m³/min	450		
Volumetric flow rate (wet STP), m³/min	390		
Volumetric flow rate (dry STP), m³/min	380		
Mass flow rate (wet basis), kg/h	30000		

Gas Analyser Results		Average	
	Sampling time	1427 - 1526	
Combustion Gases		Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)		<4 <2	
Sulfur dioxide		19 7.3	
Carbon monoxide		<6 <2	
		Concentration % v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results		Results		
	Sampling time	1235-1335		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<3	<1	
PM10	(PSA)	<3	<1	
PM2.5	(PSA)	<3	<1	
Isokinetic Sampling Parameters				
Sampling time, min		60)	
Isokinetic rate, %		99)	
Gravimetric analysis date (total par	ticulate)	17-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 37 of 84

Date 27/05/2024 Client Nyrstar Hobart Casting Ventilation 2 - V2 R016327 Report Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.2 <0.07		

VOC's C5-C20	Results		
Sampling time	1310-1340		
	Concentration Mass Rate mg/m³ g/min		
Detection limit ⁽¹⁾	<0.2 <0.07		
Acetone	<0.2 <0.07		
Toluene	<0.2 <0.07		

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachlylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, Delimonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 38 of 84

Date 27/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Casting Ventilation 2 - V2 Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1340 & 1455		
Temperature, °C	42		
Velocity at sampling plane, m/s	26		
Volumetric flow rate, actual, m³/min	430		
Volumetric flow rate (wet STP), m³/min	370		
Volumetric flow rate (dry STP), m³/min	370		
Mass flow rate (wet basis), kg/h	29000		

Isokinetic Results	Results
Sampling time	1350-1450
	Concentration Mass Rate mg/m³ g/min
Total fluoride (as HF)	0.053 0.019
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	101

Report No.: R016327 **Date:** 26/07/2024 **Page:** 39 of 84

Date 27/05/2024 Client Nyrstar Hobart

ReportR016327Stack IDCasting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation.

240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.3		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.11		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1455 & 1655		
Temperature, °C	42		
Velocity at sampling plane, m/s	27		
Volumetric flow rate, actual, m³/min	450		
Volumetric flow rate (wet STP), m³/min	390		
Volumetric flow rate (dry STP), m³/min	380		
Mass flow rate (wet basis), kg/h	30000		

Isokinetic Results	Results		
Sampling time	1500-1600		
	Concentration mg/m³	Mass Rate g/min	
Antimony	<0.006	<0.002	
Arsenic	<0.003	<0.001	
Beryllium	<0.0007	<0.0003	
Cadmium	0.00058	0.00022	
Chromium	0.0041	0.0016	
Cobalt	<0.001	<0.0004	
Copper	<0.001	<0.0004	
Lead	0.019	0.0072	
Manganese	0.039	0.015	
Mercury	<0.0008	<0.0003	
Nickel	0.012	0.0047	
Phosphorus	0.12	0.046	
Selenium	<0.009	<0.003	
Tin	<0.003	<0.001	
Vanadium	<0.001	<0.0006	
Zinc	0.51	0.19	
Total of Sb, As, Cd, Pb, Hg	≤0.028	≤0.011	
Isokinetic Sampling Parameters			
Sampling time, min	60)	
Isokinetic rate, %	99)	

Report No.: R016327 Date: 26/07/2024 Page: 40 of 84

Date 27/05/2024 Client Nyrstar Hobart

Report R016327 Stack ID Casting Ventilation 2 - V2

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Casting area in normal operation.

240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.12		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1605 & 1715		
Temperature, °C	41		
Velocity at sampling plane, m/s	27		
Volumetric flow rate, actual, m³/min	440		
Volumetric flow rate (wet STP), m ³ /min	390		
Volumetric flow rate (dry STP), m³/min	380		
Mass flow rate (wet basis), kg/h	30000		

Polycyclic Aromatic H	ydrocarbons	Resu	ılts	
(PAHs)	Sampling time	1610 - 1710		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		100000	38000000	
2-Methylnaphthalene		1400	520000	
Acenaphthylene		1300	490000	
Acenaphthene		1100	410000	
Fluorene		1000	390000	
Phenanthrene		730	280000	
Anthracene		160	61000	
Fluoranthene		420	160000	
Pyrene		290	110000	
Benz(a)anthracene		44	17000	
Chrysene		120	46000	
Benzo(b)fluoranthene		<30	<10000	
Benzo(k)fluoranthene		<30	<10000	
Benzo(e)pyrene		<30	<10000	
Benzo(a)pyrene		<30	<10000	
Perylene		<30	<10000	
Indeno(1,2,3-cd)pyrene		<30	<10000	
Dibenz(ah)anthracene		<30	<10000	
Benzo(ghi)perylene		<30	<10000	
Total 16 PAHs		110000	4000000	
Total 19 PAHs		110000	41000000	
BaP-TEQ				
Lower Bound		5.6	2100	
Middle Bound		33	13000	
Upper Bound		61	23000	
opper bound		01	23000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	100%

Report No.: R016327 Date: 26/07/2024 Page: 41 of 84

Ektimo

2.8 Roaster Baghouse

Date 29/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Roaster Baghouse Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Roaster 6 - 45 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), $\,$ fumes were on.

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1410 & 1550		
Temperature, °C	34		
Velocity at sampling plane, m/s	4.2		
Volumetric flow rate, actual, m³/min	30		
Volumetric flow rate (wet STP), m ³ /min	26		
Volumetric flow rate (dry STP), m³/min	26		
Mass flow rate (wet basis), kg/h	2000		

Gas Analyser Results		Average
	Sampling time	1306 - 1405
Combustion Gases		Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)		<4 <0.1
Carbon monoxide		<6 <0.2
		Concentration
		% v/v
Carbon dioxide		<0.4
Oxygen		20.9

Isokinetic Results		Results		
San	npling time	1420-1526		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<2	<0.05	
PM10	(PSA)	<2	<0.05	
PM2.5	(PSA)	<2	<0.05	
Sulfur dioxide		150	4	
Sulfur trioxide		1.2	0.03	
Isokinetic Sampling Parameters				
Sampling time, min		64	ļ.	
Isokinetic rate, %		10	0	
Gravimetric analysis date (total particulate)	18-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 42 of 84

Date 29/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Roaster Baghouse Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Roaster 6 - 45 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Total Speciated VOCs	Results
	Concentration Mass Rate mg/m³ g/min
Total	<0.3 <0.007

VOC's C5-C20	Results
Sampling time	1440-1460
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.007
Toluene	<0.3 <0.007

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethene, Acrylonitrile, Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane,2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene,1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane,Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Please note, acetone results not reported due to suspected contamination.

Report No.: R016327 Date: 26/07/2024 Page: 43 of 84

Date 29/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Roaster Baghouse Licence No. 7043-5 Location Hobart Ektimo Staff TAS G Trenear & T Bakas State **Process Conditions** Roaster 6 - 45 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1250 & 1410		
Temperature, °C	33		
Velocity at sampling plane, m/s	4		
Volumetric flow rate, actual, m³/min	28		
Volumetric flow rate (wet STP), m³/min	25		
Volumetric flow rate (dry STP), m³/min	24		
Mass flow rate (wet basis), kg/h	1900		

Isokinetic Results	Results		
Sampling time	1300-1406		
Total fluoride (as HF)	Concentration Mass Rate mg/m³ g/min <0.03 <0.0007		
Isokinetic Sampling Parameters	5,55		
Sampling time, min	64		
Isokinetic rate, %	100		

Report No.: R016327 Date: 26/07/2024 Page: 44 of 84

Date 29/05/2024 Client Nyrstar Hobart R016327 Report Stack ID Roaster Baghouse Licence No. 7043-5 Location Hobart G Trenear & T Bakas Ektimo Staff State TAS **Process Conditions** Roaster 6 - 45 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on.

Comments

The velocity difference for isokinetic testing is outside the criteria (±10%) The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1250 & 1410		
Temperature, °C	33		
Velocity at sampling plane, m/s	4.1		
Volumetric flow rate, actual, m³/min	28		
Volumetric flow rate (wet STP), m³/min	25		
Volumetric flow rate (dry STP), m³/min	25		
Mass flow rate (wet basis), kg/h	2000		

Isokinetic Results	Results			
Sampling time	1300-1406			
	Concentration Mass Rate mg/m³ g/min			
Antimony	<0.006 <0.0001			
Arsenic	0.0035 0.000088			
Beryllium	<0.0008 <0.00002			
Cadmium	0.026 0.00065			
Chromium	0.0043 0.00011			
Cobalt	<0.001 <0.0004			
Copper	0.016 0.00039			
Lead	0.25 0.0062			
Manganese	0.019 0.00049			
Mercury	0.0014 0.000035			
Nickel	0.0048 0.00012			
Phosphorus	0.043 0.0011			
Selenium	<0.006 <0.0002			
Tin	<0.003 <0.00009			
Vanadium	<0.002 <0.00004			
Zinc	1.5 0.037			
Total of Sb, As, Cd, Pb, Hg	≤0.28 ≤0.0071			
Isokinetic Sampling Parameters				
Sampling time, min	64			
Isokinetic rate, %	98			
Velocity difference, %	10			

Report No.: R016327 Date: 26/07/2024 Page: 45 of 84

Date29/05/2024ClientNyrstar HobartReportR016327Stack IDRoaster BaghouseLicence No.7043-5LocationHobart

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Roaster 6 - 45 t/hr, Roaster 5 - 20 t/hr (Conveyor all in operation), fumes were on. 240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1410 & 1550		
Temperature, °C	34		
Velocity at sampling plane, m/s	4.2		
Volumetric flow rate, actual, m³/min	30		
Volumetric flow rate (wet STP), m ³ /min	26		
Volumetric flow rate (dry STP), m³/min	26		
Mass flow rate (wet basis), kg/h	2000		

Polycyclic Aromatic H	ydrocarbons	Resu	ılts	
(PAHs)	Sampling time	1420 - 1526		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		97000	2500000	
2-Methylnaphthalene		460	12000	
Acenaphthylene		<20	<500	
Acenaphthene		<20	<500	
Fluorene		<20	<500	
Phenanthrene		150	3800	
Anthracene		30	780	
Fluoranthene		<20	<500	
Pyrene		<20	<500	
Benz(a)anthracene		<20	<500	
Chrysene		<20	<500	
Benzo(b)fluoranthene		<20	<500	
Benzo(k)fluoranthene		<20	<500	
Benzo(e)pyrene		<20	<500	
Benzo(a)pyrene		34	890	
Perylene		<20	<500	
Indeno(1,2,3-cd)pyrene		<20	<500	
Dibenz(ah)anthracene		<20	<500	
Benzo(ghi)perylene		<20	<500	
Total 16 PAHs		97000	2500000	
Total 19 PAHs		98000	2500000	
BaP-TEQ				
Lower Bound		34	890	
Middle Bound		42	1100	
Upper Bound		50	1300	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	101%

Report No.: R016327 Date: 26/07/2024 Page: 46 of 84

Zinc Oxide Debagging Station 2.9

Date 31/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Zinc Oxide Fume Debagging Station Licence No. 7043-5 Location Hobart

Ektimo Staff G Trenear & T Bakas TAS State

Process Conditions Fume unloading for duration of test.

Comments

Afterflows could not be recorded as this is a batch process.

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0935		
Temperature, °C	24		
Velocity at sampling plane, m/s	4.9		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	13		
Mass flow rate (wet basis), kg/h	1000		

Gas Analyser Results	Average		
Sampling tim	e 0821 - 0846		
Combustion Gases Nitrogen oxides (as NO ₂)	Concentration Mass Rate mg/m³ g/min <4 <0.05		
Sulfur dioxide	<6 <0.07		
Carbon monoxide	<6 <0.08		
	Concentration % v/v		
Carbon dioxide	<0.4		
Oxygen	20.9		

Isokinetic Results		Results		
S	ampling time	0936-1007		
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		<6	<0.08	
PM10	(PSA)	<6	<0.08	
PM2.5	(PSA)	<6	<0.08	
Isokinetic Sampling Parameters				
Sampling time, min		32		
Isokinetic rate, %		92		
Gravimetric analysis date (total particula	te)	19-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 47 of 84

Date 31/05/2024 Client Nyrstar Hobart R016327 Report Stack ID Zinc Oxide Fume Debagging Station 7043-5 Licence No. Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Fume unloading for duration of test.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.2 <0.003		

VOC's C5-C20	Results		
Sampling time	0820-0844		
	Concentration Mass Rate mg/m³ g/min		
Detection limit ⁽¹⁾	<0.2 <0.003		
Acetone	<0.2 <0.003		
Toluene	<0.2 <0.003		

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachlylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, Delimonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 48 of 84

Date 31/05/2024 Client Nyrstar Hobart Report R016327 Stack ID Zinc Oxide Fume Debagging Station 7043-5 Licence No. Location Hobart Ektimo Staff TAS G Trenear & T Bakas State **Process Conditions** Fume unloading for duration of test. 240524

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0816		
Temperature, °C	23		
Velocity at sampling plane, m/s	4.7		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	12		
Mass flow rate (wet basis), kg/h	980		

Isokinetic Results	Results	
Sampling time	0817-0847	
Total fluoride (as HF)	Concentration Mass Rate mg/m³ g/min <0.07 <0.0008	
Isokinetic Sampling Parameters	Q.07 Q.0006	
Sampling time, min	36	
Isokinetic rate, %	107	

Report No.: R016327 **Date:** 26/07/2024 **Page:** 49 of 84

Date 31/05/2024 Client Nyrstar Hobart

 Report
 R016327
 Stack ID
 Zinc Oxide Fume Debagging Station

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume unloading for duration of test.

Comments

Afterflows could not be recorded as this is a batch process.
The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0816		
Temperature, °C	23		
Velocity at sampling plane, m/s	4.7		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	12		
Mass flow rate (wet basis), kg/h	980		

Isokinetic Results	Results		
Sampling time	0817-0847		
	Concentration mg/m³	Mass Rate g/min	
Antimony	<0.01	<0.0002	
Arsenic	<0.009	<0.0001	
Beryllium	<0.002	<0.00002	
Cadmium	0.024	0.00029	
Chromium	0.011	0.00014	
Cobalt	<0.003	<0.00003	
Copper	0.0096	0.00012	
Lead	0.23	0.0029	
Manganese	0.082	0.001	
Mercury	<0.001	<0.00002	
Nickel	0.02	0.00025	
Phosphorus	0.084	0.001	
Selenium	<0.01	<0.0001	
Tin	<0.008	<0.0001	
Vanadium	<0.003	<0.00004	
Zinc	6.5	0.082	
Total of Sb, As, Cd, Pb, Hg	≤0.28	≤0.0034	
Isokinetic Sampling Parameters			
Sampling time, min	36		
Isokinetic rate, %	109		

Report No.: R016327 **Date:** 26/07/2024 **Page:** 50 of 84

Date31/05/2024ClientNyrstar Hobart

Report R016327 Stack ID Zinc Oxide Fume Debagging Station

Licence No. 7043-5 Location Hobart
Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions Fume unloading for duration of test. 2405:

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.18		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0935		
Temperature, °C	24		
Velocity at sampling plane, m/s	4.9		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	13		
Volumetric flow rate (dry STP), m³/min	13		
Mass flow rate (wet basis), kg/h	1000		

Polycyclic Aromatic H	lydrocarbons	Resu	lts	
(PAHs)	Sampling time	0936 - 1007		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		110000	1400000	
2-Methylnaphthalene		630	8300	
Acenaphthylene		<50	<700	
Acenaphthene		240	3200	
Fluorene		910	12000	
Phenanthrene		300	4000	
Anthracene		63	830	
Fluoranthene		250	3300	
Pyrene		170	2200	
Benz(a)anthracene		<50	<700	
Chrysene		91	1200	
Benzo(b)fluoranthene		<50	<700	
Benzo(k)fluoranthene		<50	<700	
Benzo(e)pyrene		<50	<700	
Benzo(a)pyrene		<50	<700	
Perylene		<50	<700	
Indeno(1,2,3-cd)pyrene		<50	<700	
Dibenz(ah)anthracene		<50	<700	
Benzo(ghi)perylene		<50	<700	
Total 16 PAHs		110000	1400000	
Total 19 PAHs		110000	1500000	
BaP-TEQ				
Lower Bound		0.91	12	
Middle Bound		46	610	
Upper Bound		92	1200	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	32
Isokinetic rate, %	101%

Report No.: R016327 Date: 26/07/2024 Page: 51 of 84

2.10 Anode Casting

Date	29/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Anode Casting	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Casting area in normal operation.			240524

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0928 & 1115		
Temperature, °C	23		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m ³ /min	50		
Volumetric flow rate (dry STP), m³/min	49		
Mass flow rate (wet basis), kg/h	3800		

Gas Analyser Results		Average	
	Sampling time	0821 -	0920
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.2
Sulfur dioxide		<6	<0.3
Carbon monoxide		<6	<0.3
		Concent % v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results		Results	
Sa	mpling time	1010-1110	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		7.1	0.35
PM10	(PSA)	3.4	0.17
PM2.5	(PSA)	0.8	0.039
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		101	
Gravimetric analysis date (total particulat	e)	17-06-2024	

Report No.: R016327 Date: 26/07/2024 Page: 52 of 84

Date 29/05/2024 Client Nyrstar Hobart R016327 Anode Casting Report Stack ID Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** Casting area in normal operation.

Total Speciated VOCs	Results
	Concentration Mass Rate mg/m³ g/min
Total	<0.3 <0.01

VOC's C5-C20	Results	
Sampling time	1035-1055	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.01	
Toluene	<0.3 <0.01	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylycyclohexane, Methyl Isobutyl ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 53 of 84

Date	29/05/2024	Client	Nyrstar Hobart
Report	R016327	Stack ID	Anode Casting
Licence No.	7043-5	Location	Hobart
Ektimo Staff	G Trenear & T Bakas	State	TAS
Process Conditions	Casting area in normal operation.		240524

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0800 & 0928		
Temperature, °C	22		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m ³ /min	50		
Volumetric flow rate (dry STP), m³/min	49		
Mass flow rate (wet basis), kg/h	3800		

Isokinetic Results	Results	
Sampling time	0820-0920	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.06 0.0029	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	101	

Report No.: R016327 Date: 26/07/2024 Page: 54 of 84

Date 29/05/2024 Client Nyrstar Hobart R016327 Stack ID Anode Casting Report Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Casting area in normal operation.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0800 & 0928		
Temperature, °C	22		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m³/min	50		
Volumetric flow rate (dry STP), m³/min	49		
Mass flow rate (wet basis), kg/h	3800		

Isokinetic Results	Results	
Sampling time	0820-0920	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.006 <0.0003	
Arsenic	<0.004 <0.0002	
Beryllium	<0.0008 <0.00004	
Cadmium	0.082 0.004	
Chromium	0.0072 0.00035	
Cobalt	0.0044 0.00021	
Copper	0.021 0.001	
Lead	0.16 0.0077	
Manganese	0.14 0.0071	
Mercury	0.0031 0.00015	
Nickel	0.012 0.00059	
Phosphorus	0.14 0.0067	
Selenium	<0.007 <0.0004	
Tin	<0.004 <0.0002	
Vanadium	<0.002 <0.0001	
Zinc	0.44 0.022	
Total of Sb, As, Cd, Pb, Hg	≤0.25 ≤0.012	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	102	

Report No.: R016327 Date: 26/07/2024 Page: 55 of 84

Date Client 29/05/2024 Nyrstar Hobart Report R016327 Stack ID **Anode Casting** Location Licence No. 7043-5 Hobart Ektimo Staff G Trenear & T Bakas State TAS **Process Conditions** Normal production in Zinc Plant 3 area.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.19		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0928 & 1115		
Temperature, °C	23		
Velocity at sampling plane, m/s	5.6		
Volumetric flow rate, actual, m³/min	54		
Volumetric flow rate (wet STP), m³/min	50		
Volumetric flow rate (dry STP), m³/min	49		
Mass flow rate (wet basis), kg/h	3800		

Polycyclic Aromatic Hy	drocarbons	Resu	ılts	
(PAHs) Sampling time		1010 - 1110		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		57000	2800000	
2-Methylnaphthalene		650	32000	
Acenaphthylene		<20	<1000	
Acenaphthene		<20	<1000	
Fluorene		440	21000	
Phenanthrene		670	33000	
Anthracene		130	6500	
Fluoranthene		330	16000	
Pyrene		220	11000	
Benz(a)anthracene		37	1800	
Chrysene		120	5900	
Benzo(b)fluoranthene		50	2400	
Benzo(k)fluoranthene		<20	<1000	
Benzo(e)pyrene		<20	<1000	
Benzo(a)pyrene		<20	<1000	
Perylene		<20	<1000	
Indeno(1,2,3-cd)pyrene		<20	<1000	
Dibenz(ah)anthracene		<20	<1000	
Benzo(ghi)perylene		<20	<1000	
Total 16 PAHs		59000	2900000	
Total 19 PAHs		60000	2900000	
BaP-TEQ				
Lower Bound		9.9	480	
Middle Bound		29	1400	
Upper Bound		49	2400	
opper Bound		49	2400	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	101%

Report No.: R016327 Date: 26/07/2024 Page: 56 of 84

Ektimo

2.11 Zinc Plant 1 Baghouse – ZP1

Date	30/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Zinc Plant 1 Baghouse - ZP 1	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Normal production in Zinc Plant 1 area.			240524

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.99		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0916 & 1025		
Temperature, °C	82		
Velocity at sampling plane, m/s	6.6		
Volumetric flow rate, actual, m³/min	77		
Volumetric flow rate (wet STP), m ³ /min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4600		

Gas Analyser Results		Average	
	Sampling time	0811 - 0	910
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.2
Sulfur dioxide		<6	<0.3
Carbon monoxide		<6	<0.4
		Concentra % v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results		Results	
Sa	mpling time	0920-1022	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		5.6	0.32
PM10	(PSA)	3.3	0.19
PM2.5	(PSA)	0.99	0.058
Isokinetic Sampling Parameters			
Sampling time, min		60)
Isokinetic rate, %		100	
Gravimetric analysis date (total particula	te)	17-06-2024	

Report No.: R016327 Date: 26/07/2024 Page: 57 of 84

Date 30/05/2024 Client Nyrstar Hobart

Report R016327 Stack ID Zinc Plant 1 Baghouse - ZP 1

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 1 area.

Total Speciated VOCs	Results		
	Concentration Mass Rate mg/m³ g/min		
Total	<0.3 <0.02		

VOC's C5-C20	Results	
Sampling time	0830-0850	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.02	
Acetone	<0.3 <0.02	
Toluene	<0.3 <0.02	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 58 of 84

Date 30/05/2024 Client Nyrstar Hobart Zinc Plant 1 Baghouse - ZP 1 Report R016327 Stack ID Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Normal production in Zinc Plant 1 area.

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.99		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0800 & 0916		
Temperature, °C	81		
Velocity at sampling plane, m/s	6.5		
Volumetric flow rate, actual, m³/min	76		
Volumetric flow rate (wet STP), m ³ /min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4500		

Isokinetic Results	Results	
Sampli	0810-0912	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.05 <0.003	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	100	

Report No.: R016327 **Date:** 26/07/2024 **Page:** 59 of 84

Date 30/05/2024 **Client** Nyrstar Hobart

Report R016327 **Stack ID** Zinc Plant 1 Baghouse - ZP 1

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 1 area.

240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.99		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0800 & 0916		
Temperature, °C	81		
Velocity at sampling plane, m/s	6.5		
Volumetric flow rate, actual, m³/min	76		
Volumetric flow rate (wet STP), m ³ /min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4500		

Isokinetic Results	Results		
Sampling time	0810-0912		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.007 <0.0004		
Arsenic	<0.004 <0.0002		
Beryllium	<0.0009 <0.00005		
Cadmium	0.022 0.0013		
Chromium	0.003 0.00018		
Cobalt	0.0012 0.000069		
Copper	0.049 0.0028		
Lead	0.21 0.012		
Manganese	0.032 0.0019		
Mercury	<0.001 <0.00006		
Nickel	0.013 0.00075		
Phosphorus	0.077 0.0044		
Selenium	<0.007 <0.0004		
Tin	<0.004 <0.0002		
Vanadium	<0.002 <0.0001		
Zinc	9 0.52		
Total of Sb, As, Cd, Pb, Hg	≤0.24 ≤0.014		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	99		

Report No.: R016327 Date: 26/07/2024 Page: 60 of 84

Date Nyrstar Hobart 30/05/2024 Client

Report R016327 Stack ID Zinc Plant 1 Baghouse - ZP 1

Location Licence No. 7043-5 Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Process Conditions Normal production in Zinc Plant 1 area.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m ³	0.99		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0916 & 1025		
Temperature, °C	82		
Velocity at sampling plane, m/s	6.6		
Volumetric flow rate, actual, m³/min	77		
Volumetric flow rate (wet STP), m³/min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4600		

Polycyclic Aromatic H	olycyclic Aromatic Hydrocarbons Results			
(PAHs)	Sampling time	0920 - 1022		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		5300	310000	
2-Methylnaphthalene		240	14000	
Acenaphthylene		<20	<1000	
Acenaphthene		<20	<1000	
Fluorene		430	25000	
Phenanthrene		120	7100	
Anthracene		26	1500	
Fluoranthene		57	3300	
Pyrene		39	2200	
Benz(a)anthracene		<20	<1000	
Chrysene		39	2200	
Benzo(b)fluoranthene		<20	<1000	
Benzo(k)fluoranthene		<20	<1000	
Benzo(e)pyrene		<20	<1000	
Benzo(a)pyrene		<20	<1000	
Perylene		<20	<1000	
Indeno(1,2,3-cd)pyrene		<20	<1000	
Dibenz(ah)anthracene		<20	<1000	
Benzo(ghi)perylene		<20	<1000	
Total 16 PAHs		6100	350000	
Total 19 PAHs		6300	360000	
BaP-TEQ				
Lower Bound		0.39	22	
Middle Bound		23	1300	
Upper Bound		45	2600	

Abbreviations and definitions

BaP-TEQ $Benzo (a) pyrene\ toxic\ equivalents.$

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit. Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	60
Isokinetic rate, %	98%

Report No.: R016327 Date: 26/07/2024 Page: 61 of 84

2.12 Zinc Plant 3 Baghouse – ZP3

Date	30/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	Zinc Plant 3 Baghouse - ZP 3	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Normal production in Zinc Plant 3 area.			240524

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.98		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1157 & 1315		
Temperature, °C	82		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	53		
Volumetric flow rate (wet STP), m ³ /min	41		
Volumetric flow rate (dry STP), m³/min	40		
Mass flow rate (wet basis), kg/h	3100		

Gas Analyser Results		Average	
	Sampling time	1055 - 1154	
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.2
Sulfur dioxide		<6	<0.2
Carbon monoxide		<6	<0.3
		Concentration % v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results		
Sampling	1205-1311		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	8.7 0.34		
PM10 (SA) 5.1 0.2		
PM2.5	(SA) 1.3 0.051		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	100		
Gravimetric analysis date (total particulate)	17-06-2024		

Report No.: R016327 Date: 26/07/2024 Page: 62 of 84

Total Speciated VOCs

Total

Date 30/05/2024 Client Nyrstar Hobart

Report R016327 Stack ID Zinc Plant 3 Baghouse - ZP 3

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Normal production in Zinc Plant 3 area.

Resu	ılts
Concentration mg/m³	Mass Rate g/min

<0.01

VOC's C5-C20	Results
Sampling time	1205-1225
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.3 <0.01
Acetone	<0.3 <0.01
Toluene	<0.3 <0.01

<0.3

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 63 of 84

Date 30/05/2024 Client Nyrstar Hobart Zinc Plant 3 Baghouse - ZP 3 Report R016327 Stack ID Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** Normal production in Zinc Plant 3 area.

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.98		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1040 & 1157		
Temperature, °C	82		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	53		
Volumetric flow rate (wet STP), m³/min	40		
Volumetric flow rate (dry STP), m³/min	40		
Mass flow rate (wet basis), kg/h	3100		

Isokinetic Results	Results	
Sampling time	1045-1153	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.028 0.0011	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	100	

Report No.: R016327 Date: 26/07/2024 Page: 64 of 84

Date 30/05/2024 **Client** Nyrstar Hobart

Report R016327 **Stack ID** Zinc Plant 3 Baghouse - ZP 3

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Normal production in Zinc Plant 3 area.

240524

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.99		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1040 & 1157		
Temperature, °C	82		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	53		
Volumetric flow rate (wet STP), m ³ /min	40		
Volumetric flow rate (dry STP), m³/min	40		
Mass flow rate (wet basis), kg/h	3100		

Isokinetic Results	Results		
Sampling time	1045-1153		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.006 <0.0002		
Arsenic	<0.003 <0.0001		
Beryllium	<0.0008 <0.00003		
Cadmium	0.0056 0.00022		
Chromium	0.003 0.00012		
Cobalt	<0.001 <0.00004		
Copper	<0.001 <0.00004		
Lead	0.14 0.0056		
Manganese	0.04 0.0016		
Mercury	<0.0009 <0.00003		
Nickel	0.0085 0.00034		
Phosphorus	0.038 0.0015		
Selenium	<0.007 <0.0003		
Tin	<0.003 <0.0001		
Vanadium	<0.002 <0.00006		
Zinc	8.8 0.35		
Total of Sb, As, Cd, Pb, Hg	≤0.15 ≤0.0062		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	102		

Report No.: R016327 Date: 26/07/2024 Page: 65 of 84

Date Client Nyrstar Hobart 30/05/2024

Report R016327 Stack ID Zinc Plant 3 Baghouse - ZP 3

Location Licence No. 7043-5 Hobart Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions Normal production in Zinc Plant 3 area.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	0.98		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1157 & 1315		
Temperature, °C	82		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	53		
Volumetric flow rate (wet STP), m ³ /min	41		
Volumetric flow rate (dry STP), m³/min	40		
Mass flow rate (wet basis), kg/h	3100		

Polycyclic Aromatic	Hydrocarbons	Resu	ılts	
(PAHs)	Sampling time	1205 - 1311		
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		41000	1600000	
2-Methylnaphthalene		450	18000	
Acenaphthylene		<20	<900	
Acenaphthene		<20	<900	
Fluorene		<20	<900	
Phenanthrene		450	18000	
Anthracene		72	2800	
Fluoranthene		320	13000	
Pyrene		210	8500	
Benz(a)anthracene		100	4000	
Chrysene		180	7100	
Benzo(b)fluoranthene		160	6200	
Benzo(k)fluoranthene		70	2800	
Benzo(e)pyrene		98	3900	
Benzo(a)pyrene		83	3300	
Perylene		<20	<900	
Indeno(1,2,3-cd)pyren	e	72	2800	
Dibenz(ah)anthracene		<20	<900	
Benzo(ghi)perylene		93	3700	
Total 16 PAHs		43000	1700000	
Total 19 PAHs		44000	1700000	
BaP-TEQ				
Lower Bound		120	5000	
Middle Bound		130	5100	
Upper Bound		130	5300	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit. Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	101%

Report No.: R016327 Date: 26/07/2024 Page: 66 of 84

2.13 MZR Furnace Baghouse

Date	30/05/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	MZR Furnace	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	MZR Furnace in operation.			240524

Stack Parameters			
Moisture content, %v/v	1.5		
Gas molecular weight, g/g mole	29.0 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.06		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1606 & 1725		
Temperature, °C	52		
Velocity at sampling plane, m/s	6.1		
Volumetric flow rate, actual, m³/min	72		
Volumetric flow rate (wet STP), m ³ /min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4600		

Gas Analyser Results		Average	
	Sampling time	1632 - 1705	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		17 0.98	
Sulfur dioxide		11 0.65	
Carbon monoxide		<6 <0.4	
		Concentration	
		% v/v	
Carbon dioxide		1.9	
Oxygen		17.9	

Isokinetic Results		Results		
Sa	mpling time	1615-3	-1721	
		Concentration mg/m³	Mass Rate g/min	
Total particulate matter		15	0.88	
PM10	(PSA)	12	0.67	
PM2.5	(PSA)	2.7	0.15	
Isokinetic Sampling Parameters				
Sampling time, min		64	1	
Isokinetic rate, %		10	3	
Gravimetric analysis date (total particulate)		19-06-	2024	

Report No.: R016327 Date: 26/07/2024 Page: 67 of 84

Date 30/05/2024 Client Nyrstar Hobart R016327 Stack ID MZR Furnace Report Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.02	

VOC's C5-C20	Results	
Sampling time	1530-1550	
	Concentration Mass Rate mg/m³ g/min	
Detection limit ⁽¹⁾	<0.3 <0.02	
Acetone	<0.3 <0.02	
Toluene	<0.3 <0.02	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetr-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, Delimonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 **Date:** 26/07/2024 **Page:** 68 of 84

Date 30/05/2024 Client Nyrstar Hobart Report R016327 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart Ektimo Staff TAS G Trenear & T Bakas State **Process Conditions** MZR Furnace in operation.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1450 & 1606		
Temperature, °C	52		
Velocity at sampling plane, m/s	5.7		
Volumetric flow rate, actual, m³/min	67		
Volumetric flow rate (wet STP), m³/min	54		
Volumetric flow rate (dry STP), m³/min	53		
Mass flow rate (wet basis), kg/h	4200		

Isokinetic Results	Results	
Sampling time	1456-1602	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	<0.03 <0.001	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	102	

Report No.: R016327 **Date:** 26/07/2024 **Page:** 69 of 84

Ektimo

Date 30/05/2024 Client Nyrstar Hobart Report R016327 Stack ID MZR Furnace Licence No. 7043-5 Location Hobart TAS Ektimo Staff G Trenear & T Bakas State **Process Conditions** MZR Furnace in operation.

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2.4		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1450 & 1606		
Temperature, °C	52		
Velocity at sampling plane, m/s	5.7		
Volumetric flow rate, actual, m³/min	67		
Volumetric flow rate (wet STP), m³/min	54		
Volumetric flow rate (dry STP), m³/min	53		
Mass flow rate (wet basis), kg/h	4200		

Isokinetic Results	Results		
Sampling time	1456-1602		
	Concentration Mass Rate mg/m³ g/min		
Antimony	<0.007 <0.0004		
Arsenic	<0.003 <0.0002		
Beryllium	<0.0009 <0.00005		
Cadmium	0.009 0.00048		
Chromium	0.0088 0.00047		
Cobalt	<0.001 <0.00006		
Copper	0.0087 0.00046		
Lead	0.064 0.0034		
Manganese	0.068 0.0036		
Mercury	<0.0009 <0.00005		
Nickel	0.012 0.00063		
Phosphorus	0.05 0.0026		
Selenium	<0.007 <0.0004		
Tin	0.013 0.00068		
Vanadium	<0.002 <0.0001		
Zinc	13 0.69		
Total of Sb, As, Cd, Pb, Hg	≤0.084 ≤0.0045		
Isokinetic Sampling Parameters			
Sampling time, min	64		
Isokinetic rate, %	103		

Report No.: R016327 Date: 26/07/2024 Page: 70 of 84

Ektimo

Date 30/05/2024 Client Nyrstar Hobart Stack ID Report R016327 MZR Furnace Location Licence No. 7043-5 Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation

Comments

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.05		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1606 & 1725		
Temperature, °C	52		
Velocity at sampling plane, m/s	6.1		
Volumetric flow rate, actual, m³/min	72		
Volumetric flow rate (wet STP), m³/min	59		
Volumetric flow rate (dry STP), m³/min	58		
Mass flow rate (wet basis), kg/h	4600		

Polycyclic Aromatic H	ydrocarbons	Resu	ılts	
(PAHs)	Sampling time	1615 -	1721	
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		48000	2800000	
2-Methylnaphthalene		350	20000	
Acenaphthylene		<20	<1000	
Acenaphthene		99	5700	
Fluorene		340	20000	
Phenanthrene		410	24000	
Anthracene		31	1800	
Fluoranthene		1000	59000	
Pyrene		340	20000	
Benz(a)anthracene		28	1600	
Chrysene		130	7700	
Benzo(b)fluoranthene		29	1700	
Benzo(k)fluoranthene		<20	<1000	
Benzo(e)pyrene		<20	<1000	
Benzo(a)pyrene		<20	<1000	
Perylene		<20	<1000	
Indeno(1,2,3-cd)pyrene		<20	<1000	
Dibenz(ah)anthracene		<20	<1000	
Benzo(ghi)perylene		<20	<1000	
Total 16 PAHs		51000	2900000	
Total 19 PAHs		51000	2900000	
BaP-TEQ				
Lower Bound		7	400	
Middle Bound		26	1500	
Upper Bound		45	2600	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	64
Isokinetic rate, %	97%

Report No.: R016327 **Date:** 26/07/2024 **Page:** 71 of 84

Ektimo

2.14 MZR Dross Stack

Date	3/06/2024	Client	Nyrstar Hobart
Report	R016327	Stack ID	MZR Dross Stack
Licence No.	7043-5	Location	Hobart
Ektimo Staff	G Trenear & T Bakas	State	TAS
Process Conditions	MZR Furnace in operation.		240524

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1619		
Temperature, °C	23		
Velocity at sampling plane, m/s	22		
Volumetric flow rate, actual, m³/min	260		
Volumetric flow rate (wet STP), m³/min	230		
Volumetric flow rate (dry STP), m ³ /min	230		
Mass flow rate (wet basis), kg/h	18000		

Gas Analyser Results		Aver	age
Sam	pling time	1520 -	1550
		Concentration mg/m³	Mass Rate
Combustion Gases		=	-
Nitrogen oxides (as NO ₂)		<4	<0.9
Sulfur dioxide		<6	<1
Carbon monoxide		<6	<1
		Concent	tration
		% v,	/v
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	ic Results Results		ılts
	Sampling time	1620-1708	
		Concentration mg/m³	Mass Rate g/min
Total particulate matter		<2	<0.5
PM10	(PSA)	<2	<0.5
PM2.5	(PSA)	<2	<0.5
Isokinetic Sampling Parameters			
Sampling time, min		48	3
Isokinetic rate, %		10	1
Gravimetric analysis date (total	particulate)	19-06-	2024

Report No.: R016327 Date: 26/07/2024 Page: 72 of 84

Date 3/06/2024 Client Nyrstar Hobart R016327 Report Stack ID MZR Dross Stack Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS **Process Conditions** MZR Furnace in operation.

Total Speciated VOCs	Results	
	Concentration Mass Rate mg/m³ g/min	
Total	<0.3 <0.06	

VOC's C5-C20	Results		
Sampling time	1530-1550		
	Concentration Mass Rate mg/m³ g/min		
Detection limit ⁽¹⁾	<0.3 <0.06		
Acetone	<0.3 <0.06		
Toluene	<0.3 <0.06		

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetrachylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R016327 Date: 26/07/2024 Page: 73 of 84

Date	3/06/2024	Client	Nyrstar Hobart	
Report	R016327	Stack ID	MZR Dross Stack	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	MZR Furnace in operation.			240524

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1517		
Temperature, °C	23		
Velocity at sampling plane, m/s	22		
Volumetric flow rate, actual, m³/min	260		
Volumetric flow rate (wet STP), m³/min	230		
Volumetric flow rate (dry STP), m³/min	230		
Mass flow rate (wet basis), kg/h	18000		

Isokinetic Results	Results	
Sampling time	1518-1608	
	Concentration Mass Rate mg/m³ g/min	
Total fluoride (as HF)	0.065 0.015	
Isokinetic Sampling Parameters		
Sampling time, min	48	
Isokinetic rate, %	98	

Report No.: R016327 Date: 26/07/2024 Page: 74 of 84

Date 3/06/2024 Client Nyrstar Hobart MZR Dross Stack R016327 Report Stack ID Licence No. 7043-5 Location Hobart Ektimo Staff G Trenear & T Bakas TAS State **Process Conditions** MZR Furnace in operation.

Comments

No afterflows were recorded as this a batch process

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1517		
Temperature, °C	23		
Velocity at sampling plane, m/s	22		
Volumetric flow rate, actual, m³/min	260		
Volumetric flow rate (wet STP), m³/min	230		
Volumetric flow rate (dry STP), m³/min	230		
Mass flow rate (wet basis), kg/h	18000		

Isokinetic Results	Results
Sampling time	1518-1608
	Concentration Mass Rate mg/m³ g/min
Antimony	<0.007 <0.002
Arsenic	0.0055 0.0013
Beryllium	<0.0008 <0.0002
Cadmium	0.2 0.045
Chromium	0.007 0.0016
Cobalt	0.0023 0.00052
Copper	0.019 0.0044
Lead	0.26 0.06
Manganese	0.12 0.027
Mercury	<0.0009 <0.0002
Nickel	0.037 0.0084
Phosphorus	0.089 0.02
Selenium	<0.006 <0.001
Tin	0.0039 0.00089
Vanadium	<0.002 <0.0004
Zinc	5.7 1.3
Total of Sb, As, Cd, Pb, Hg	≤0.48 ≤0.11
Isokinetic Sampling Parameters	
Sampling time, min	48
Isokinetic rate, %	101

Report No.: R016327 **Date:** 26/07/2024 **Page:** 75 of 84

Ektimo

Nyrstar Hobart Date Client 3/06/2024 MZR Dross Stack Report R016327 Stack ID Licence No. Hobart 7043-5 Location **Ektimo Staff** G Trenear & T Bakas TAS **Process Conditions** MZR Furnace in operation.

Comments

No afterflows were recorded as this a batch process

The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1619		
Temperature, °C	23		
Velocity at sampling plane, m/s	22		
Volumetric flow rate, actual, m³/min	260		
Volumetric flow rate (wet STP), m³/min	230		
Volumetric flow rate (dry STP), m³/min	230		
Mass flow rate (wet basis), kg/h	18000		

Polycyclic Aromatic I	Hydrocarbons	Resu	lts	
(PAHs)	Sampling time	1620 -	1708	
		Concentration	Mass Rate	
		ng/m³	ng/min	
Naphthalene		13000	3000000	
2-Methylnaphthalene		210	49000	
Acenaphthylene		<20	<5000	
Acenaphthene		<20	<5000	
Fluorene		380	87000	
Phenanthrene		290	65000	
Anthracene		1200	260000	
Fluoranthene		240	54000	
Pyrene		110	25000	
Benz(a)anthracene		58	13000	
Chrysene		97	22000	
Benzo(b)fluoranthene		93	21000	
Benzo(k)fluoranthene		43	9700	
Benzo(e)pyrene		70	16000	
Benzo(a)pyrene		74	17000	
Perylene		<20	<5000	
Indeno(1,2,3-cd)pyrene	2	<20	<5000	
Dibenz(ah)anthracene		<20	<5000	
Benzo(ghi)perylene		76	17000	
Total 16 PAHs		16000	3600000	
Total 19 PAHs		16000	3600000	
BaP-TEQ				
Lower Bound		94	21000	
Middle Bound		100	23000	
Upper Bound		110	24000	

Abbreviations and definitions

BaP-TEQ Benzo(a)pyrene toxic equivalents.

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound

Defines values reported below detection are equal to half the detection limit.

Upper Bound

Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
PAHs	
Sampling time, min	48
Isokinetic rate, %	99%

Report No.: R016327 Date: 26/07/2024 Page: 76 of 84

Ektimo

3 Sample Plane Compliance

3.1 Foreshore A

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Sample plane conformance to AS 4323.1

1530 mm

1.84 m²

4" Flange (x2), 150 mm

Vertical Circular

Bend 1D

Centrifugal fan 3D

2 20

Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.2 Foreshore B

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance Upstream disturbance

No. traverses & points sampled

Sample plane conformance to AS 4323.1

1530 mm

1.84 m²

4" Flange (x2), 150 mm

Vertical Circular

Bend 1D

Centrifugal fan $3\,\mathrm{D}$

2 20

Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.3 Parageothite Dryer

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

Sample plane conformance to AS 4323.1

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

Vertical Circular Exit >2 D

Centrifugal fan >6 D

2 12

950 mm

0.709 m²

4" Flange (x2), 50 mm

Ideal sampling plane

Report No.: R016327 Date: 26/07/2024 Page: 77 of 84

Ektimo

3.4 Cadmium Smelter Plant Scrubber Stack

Sampling Plane Details

Sampling plane dimensions

470 mm

Sampling plane area

0.173 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

Change in diameter 2 D

No. traverses & points sampled 2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.5 Copper Sulphate Crystalliser Plant Vent Stack

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number & depth 4" Flange (x2), 100 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Bend 4D Upstream disturbance 2 12 No. traverses & points sampled Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.6 Casting Ventilation 1 – V1

Sampling Plane Details

Sampling plane dimensions 635 mm $0.317 \, m^2$ Sampling plane area Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Report No.: R016327 Date: 26/07/2024 Page: 78 of 84

Ektimo

3.7 Casting Ventilation 2 – V2

Sampling Plane Details

Sampling plane dimensions
Sampling plane area
Sampling port size, number & depth
Duct orientation & shape
Downstream disturbance
Upstream disturbance
No. traverses & points sampled

Sample plane conformance to AS 4323.1

4" Flange (x1), 245 mm Vertical Circular Exit 2 D Centrifugal fan 2 D 1 6 Non-conforming

595 mm

0.278 m²

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.8 Roaster Baghouse

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² Sampling port size, number & depth 4" BSP (x2), 105 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D No. traverses & points sampled 28 Sample plane conformance to AS 4323.1 Ideal sampling plane

3.9 Zinc Oxide Debagging Station

Sampling Plane Details

Sampling plane dimensions 250 mm Sampling plane area 0.0491 m² 3" Flange (x4) Sampling port size, number Duct orientation & shape Vertical Circular Downstream disturbance Cowl >2 D Bend >6 D Upstream disturbance No. traverses & points sampled 2 4 Sample plane conformance to AS 4323.1 Ideal sampling plane

Report No.: R016327 Date: 26/07/2024 Page: 79 of 84

Ektimo

3.10 Anode Casting

Sampling Plane Details

Sampling plane dimensions 450 mm 0.159 m² Sampling plane area Sampling port size, number 4" Flange (x1) Duct orientation & shape Vertical Circular Downstream disturbance Exit 2D Upstream disturbance Centrifugal fan 2D No. traverses & points sampled 16 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement
The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.11 Zinc Plant 1 Baghouse – ZP1

Sampling Plane Details

Sampling plane dimensions 390 x 500 mm Sampling plane area 0.195 m² Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D 3 6 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.12 Zinc Plant 3 Baghouse - ZP3

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.0638 m²

Sampling port size, number

2" Holes (x2)

Duct orientation & shape

Horizontal Circular

Downstream disturbance

Bend 1 D

Upstream disturbance

Bend 4 D

No. traverses & points sampled

2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Report No.: R016327 **Date:** 26/07/2024 **Page:** 80 of 84

Ektimo

3.13 MZR Furnace Baghouse

Sampling Plane Details

Sampling plane dimensions 500 mm
Sampling plane area 0.196 m²
Sampling port size, number & depth 4" BSP (x2), 80 mm
Duct orientation & shape Vertical Circular
Downstream disturbance Bend 2 D
Upstream disturbance Bend 6 D

Sample plane conformance to AS 4323.1 Conforming but non-ideal

28

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

3.14 MZR Dross Stack

No. traverses & points sampled

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² Sampling port size, number 4" BSP (x2) Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D 28 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

4 Plant Operating Conditions

See Nyrstar Hobart records for complete process conditions.

Report No.: R016327 Date: 26/07/2024 Page: 81 of 84

5 Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA ac	credited
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Nitrous oxide	NA	gas analyser	12%	NA	x ^h
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Speciated volatile organic compounds	Ektimo 344	Ektimo 344	19%	✓	√ †
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	√ ^{††}
Double Jako most or (DNA 9 DNA) by mortials		Ektimo 410			
Particulate matter (PM ₁₀ & PM _{2.5}) by particle	AS 4323.2	in-house method using	not specified	×	× [†]
size analysis		Malvern Mastersizer 3000			
Total (gaseous & particulate) metals (Sb, As,	USEPA Method 29	Envirolab in-house	15%	✓	√ ‡
Be, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, P, Se, Zn)	OSLFA WELIIOU 25	methods Metals-	1376	•	•
Total (gaseous & particulate) metals (Non-		Envirolab in-house			
USEPA 29) (Sn, V)	USEPA Method 29	methods Metals-	15%	× ^{‡‡}	√ ‡
USEPA 29) (SII, V)		020/021/022			
Total fluoride	USEPA Method 13B	Ektimo 235	17%	✓	✓†
Polycyclic aromatic hydrocarbons (PAHs)	USEPA SW-846 0010	NMI in-house method	21%	✓	√1
Polycyclic aromatic hydrocarbons (PAHS)	USEPA 3VV-840 UUIU	NGCMS 11.27	21%	•	v "
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	✓†

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

- 21 June 2024 in report LV-005923
- 25 June 2024 in report LV-005942
- 26 June 2024 in report LV-005951
- 26 June 2024 in report LV-005957
- 26 June 2024 in report LV-005968

[¶] Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 9 July 2024 in report RN1434142.

[†] Analysis performed by Ektimo. Results were reported to Ektimo on:

 $^{^{\}dagger\dagger}$ Gravimetric analysis conducted at the Ektimo VIC laboratory.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 3 July 2024 in report 354698.

^{‡‡} Specified metals are not listed in USEPA Method 29 and therefore, are not covered by NATA accreditation for sampling.

^h Nitrous oxide analysis performed using a real-time analyser. Ektimo is not NATA accredited for this method.

^j Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

Report No.: R016327 Date: 26/07/2024 Page: 82 of 84

6 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

Report No.: R016327 Date: 26/07/2024 Page: 83 of 84

Ektimo

7 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio ~ Approximately

< Less than > Greater than

≥ Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water

AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half

of the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate
I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable
NATA National Asso

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required

OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa. $\,$

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Report No.: R016327 **Date:** 26/07/2024 **Page:** 84 of 84

Ektimo

8 Appendices

Appendix A: Site Images

Foreshore A

Foreshore B

Parageothite Dryer

Cadmium Smelter Plant Scrubber Stack

Copper Sulphate Crystalliser Plant Vent Stack

Casting Ventilation 1 – V1

Casting Ventilation 2 – V2

Roaster Baghouse

Anode Casting

Prepared for: Nyrstar Hobart **Report No.:** R016327

Date: 26/07/2024

Ektimo

Zinc Plant 1 Baghouse – ZP1

Zinc Plant 3 Baghouse – ZP3

MZR Furnace Stack

MZR Dross

Report No.: R016327 **Date:** 26/07/2024

Ektimo

Appendix B: Weather Observations

Hobart, Tasmania

May 2024 Daily Weather Observations

Date	Day	Ten	nps	Rain	Evap	Sun	Max	wind	gust			9:00	AM					3:00	PM		
		Min	Max				Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	km/h		local	°C	%	8th	km/h		hPa	°C	%	8th	km/h		hPa
1	We	5.5	15.6	0			SSW	39	19:14	10	72	1	NW	17	1035	14.5	61	1	SE	15	1033
2	Th	6.6	14.3	0			S	30	15:17	10.3	68	7	NW	17	1036	12.4	77	7	SSE	19	1034
3	Fr	4.6	15.2	0			NW	24	4:06	8.5	80	3	NW	17	1035	13	76	6	SSE	15	1032
4	Sa	8.1	14	2.4			NW	17	23:39	10.7	91	4	NNE	9	1032	13.8	67	7	ENE	9	1030
5	Su	3.9	15.9	0.2			SSE	35	15:44	7.6	93	1	NW	11	1030	14.2	57	7	SSW	13	1029
6	Мо	7.6	17	0			NW	31	10:38	10.2	62	7	NW	19	1035	16.1	50	6	NNE	7	1033
7	Tu	5.2	16.8	0			SSE	24	17:29	9.3	79	7	NW	11	1035	15.1	57	6	SE	9	1033
8	We	9.2	13.9	2.2			SE	24	13:24	11.3	99	8	WNW	4	1038	12.2	95	8	SE	13	1036
9	Th	10.1	14.8	0			S	20	19:34	12.1	97	7	NNE	6	1037	14.4	86	7	SSE	11	1035
10	Fr	11.8	15.5	6.8			SE	22	12:36	13	96	7	SSW	11	1038	14.7	81	6	SSE	13	1036
11	Sa	9.5	15.1	8.0			SE	17	13:19	10.9	100	8	NW	6	1037	14.1	85	3	SSE	9	1034
12	Su	5.1	17	0.2			NNE	26	16:53	8.2	100	2	WNW	6	1030	16.8	63	3	NNE	15	1026
13	Мо	8.2	18.6	0			N	48	11:32	13.9	75	2	NNE	9	1017	15.6	67	3	W	19	1013
14	Tu	8.7	15.8	3.4			WNW	61	2:05	11.1	58	6	WSW	24	1021	14.9	43	1	WNW	26	1022
15	We	11.1	18.5	0			WNW	56	12:57	14.2	60	7	NW	28	1019	17.1	58	7	W	30	1017
16	Th	5.5	15.8	0			NW	43	14:20	11.5	63	7	NNW	19	1022	14.9	57	7	NW	28	1018
17	Fr	9.1	12.6	3			SW	56	19:43	9.2	86	5	S	13	1019	8.7	70	7	SW	30	1021
18	Sa	4	12.1	4.4			NW	50	20:00	6	72	7	NW	24	1032	10.6	57	7	NW	17	1025
19	Su	6	15.5	0.4			W	41	13:20	12	72	5	SW	19	1017	13.7	67	6	S	19	1017
20	Мо	2.5	12.5	0.2			NW	24	8:27	5.7	94	7	NW	17	1028	11.7	64	5	S	15	1027
21	Tu	4.1	12.8	0.2			NW	35	9:16	7.6	78	7	NNW	15	1030	12.4	65	8	NW	20	1027
22	We	7.5	16	3.4			WNW	30	16:28	11	94	7	NW	6	1026	14.4	68	6	NW	13	1023
23	Th	9.6	12.6	0			NW	41	6:37	12.4	72	7	NW	19	1023	10.5	89	8	S	13	1025
24	Fr	3.5	12.7	3			NW	19	8:53	7.3	97	1	NW	15	1031	10.8	73	6	SSE	9	1030
25	Sa	3	13.5	0.2			NW	24	10:13	4.8	92	5	NW	11	1031	11.7	65	7	S	13	1029
26	Su	1.9	14.7	0.2			WNW	24	10:45	5.2	93	5	NW	13	1028	12.9	68	2	SSE	9	1023
27	Мо	5.1	16.8	0			WNW	48	14:07	12.7	64	1	NNW	15	1018	16.4	46	1	WNW	28	1017
28	Tu	9.7	16.4	0.2			N	31	2:49	12.3	98	7	SSE	17	1021	14.9	83	7	S	2	1020
29	We	9.5	18.2	0.2			NNW	52	22:34	13.7	65	7	NNW	26	1019	16.8	63	7	N	17	1016
30	Th	11	19.5	0			NNW	54	1:22	15.6	55	7	NW	37	1010	18.3	58	7	N	28	1004
31	Fr	12.1	16.4	0			NW	89	11:37	15.1	46	1	NNW	26	994.8	12.1	59	2	NW	44	995.5
									Sta	tistics for											
Mean		7.1	15.4							10.4	79	5		15	1027	13.9	66	5		17	1025
Lowest		1.9	12.1	0						4.8	46	1	WNW	4	994.8	8.7	43	1	S	2	995.5
Highest		12.1	19.5	6.8			NW	89		15.6	100	8	NW	37	1038	18.3	95	8	NW	44	1036
Total				31.4																	
27 28 29 30 31 Mean Lowest	Mo Tu We Th Fr	5.1 9.7 9.5 11 12.1 7.1 1.9	16.8 16.4 18.2 19.5 16.4 15.4 12.1 19.5	0 0.2 0.2 0 0 0			WNW N NNW NNW	48 31 52 54 89	14:07 2:49 22:34 1:22 11:37 Sta	12.7 12.3 13.7 15.6 15.1 tistics for 10.4 4.8	64 98 65 55 46 May 20 79 46 100	1 7 7 7 1 24 5 1 8	NNW SSE NNW NW NNW	15 17 26 37 26 15 4	1018 1021 1019 1010 994.8 1027 994.8	16.4 14.9 16.8 18.3 12.1 13.9 8.7	46 83 63 58 59 66 43	1 7 7 7 2 5 1	WNW S N N NW	28 2 17 28 44	10 10 10 10 99

IDCJDW7062.202405 Prepared at 16:03 UTC on Tuesday 16 July 2024

Site name: HOBART AIRPORT Site number: 0944250 Latitude: 42.84 °S Longitude: 147.50 °E Elevation: 7 m

Report No.: R016327 **Date:** 26/07/2024

Ektimo

June 2024 Daily Weather Observations

Date	Day	Ten	nps	Rain	Evap	Sun	Max	wind	gust			9:00	AM					3:00	PM		
		Min	Max				Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP
		°C	°C	mm	mm	hours	km/h		local	°C	%	8th	km/h		hPa	°C	%	8th	km/h		hPa
1	Sa	4.3	13.2	0			W	22	10:33	8.7	79	1	W	6	1023	11.7	53	7	SSE	9	1025
2	Su	3.9	12.4	0			NW	24	11:35	6.3	82	7	NW	9	1030	10.9	62	7	NE	9	1026
3	Мо	6.2	13.4	0.2			SSE	35	5:07	11	85	8	S	17	1018	12.7	99	8	S	22	1011
4	Tu	7.5	15.2	9			NW	26	6:47	11.2	98	1	NW	15	1011	14	82	4	SSE	6	1011
5	We	5.3	15.6	0			WSW	24	11:05	11.6	92	2	Calm		1021	14.5	58	7	NW	7	1022
6	Th	9	14.8	0			WNW	24	7:54	9.7	87	7	NW	19	1029	12.4	87	7	SSE	15	1028
7	Fr	9.7	13	0			N	20	11:43	10.6	78	7	N	6	1028	12.4	68		Ε	6	1024
8	Sa	1.9	12.1	0.4			NW	30	5:00	4.7	98	2	NW	6	1019	11.7	66	3	NW	13	1013
9	Su	4.6	12.8	8.0			S	35	12:14	9.4	87	7	WSW	17	1015	11.3	65	5	SSW	20	1016
10	Мо	1.6	13.2	0.2			NW	31	11:05	8.2	65	1	NNW	15	1019	11.7	50	2	NW	19	1017
11	Tu	5.7	15.4	3.4			NNW	52	11:09	11.9	86	8	WNW	31	996.9	12.9	62	5	WNW	31	991.8
12	We	5.7	10.4	1.2			WSW	61	3:06	7.3	67	6	WSW	30	1008	9.4	65	6	WSW	19	1013
13	Th	3.1	12.8	0			SW	28	12:36	6.9	85	5	NW	15	1022	11	68	7	S	13	1022
14	Fr	5.9	10.1	0.6			SSE	30	18:04	7.3	98	7	W	6	1027	9.7	69	7	SSE	9	1026
15	Sa	4.7	11.1	2			S	43	15:32	8.3	88	7	SW	15	1026	10.3	73	7	SSW	22	1024
16	Su	8.1	11.1	1.6			SSW	52	0:16	9.4	76	7	SSW	28	1021	10.7	69	7	SSW	26	1021
17	Мо	7.9	10.5	0.6			SSW	37	1:19	7.9	93	7	WSW	9	1024	10	78	2	SSW	13	1022
18	Tu	5.4	9.7	3.2			NW	28	8:43	5.9	98	6	NW	20	1021	9.3	85	7	NW	9	1019
19	We	4.9	10.4	1.4			NW	22	9:01	6	93	7	NW	17	1018	9.9	80	6	W	2	1016
20	Th	6	10.6	3.2			SW	28	12:03	8.6	99	7	SW	19	1019	10.2	86	7	S	15	1019
21	Fr	6.9	12.7	4.2			S	28	14:24	7.5	94	7	NW	13	1022	10.1	94	7	SW	20	1023
22	Sa	3.2	14	0.6			NNW	22	9:30	7.3	82	1	NNW	15	1028	13.2	63	7	SSW	4	1027
23	Su	6.4	12.7	0			NW	22	4:19	8.1	89	7	NW	13	1027	11.5	75	6	N	6	1024
24	Мо	1.3	13.6	0.2			NW	24	8:59	5	100	8	NW	19	1018	13.3	62	7	N	11	1014
25	Tu	3.8	12.9	0.2			NNW	28	22:06	7.5	90	4	WNW	2	1016	11.7	71	7	NNE	9	1014
26	We	2.3	11	2.6			WNW	54	12:10	5.2	100	7	Calm		1012	9.6	85	7	NNW	9	1009
27	Th	3.1	13.5	8.0			NNW	31	4:18	9	69	7	NW	7	1011	13.1	62	3	NW	17	1010
28	Fr	5.4	13.7	0			NNW	37	1:45	7.5	84	7	NW	13	1018	12	68	7	N	13	1014
29	Sa	7.5	15.2	0			NW	57	11:51	12.4	76	6	NW	20	1001	12.4	57	5	NW	33	1000
30	Su	5.9	9.5	4.6			SW	43	12:04	6.4	85	3	SW	26	1018	8.4	68	6	S	24	1020
									Stat	istics for		-									
Mean		5.2	12.6							8.2	86	5		14	1019	11.4	71	5		14	1017
Lowest		1.3	9.5	0						4.7	65	1	Calm		996.9	8.4	50	2	W	2	991.8
Highest		9.7	15.6	9			WSW	61		12.4	100	8	WNW	31	1030	14.5	99	8	NW	33	1028
Total				41																	

IDCJDW7062.202406 Prepared at 13:03 UTC on Sunday 14 July 2024

Site name: HOBART AIRPORT Site number: 0944250 Latitude: 42.84 °S Longitude: 147.50 °E Elevation: 7 m

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Ektimo

Nyrstar Hobart, Lutana

Emission Testing Report

Cadmium Smelter Re-Test – August 2024

Report R017615

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

Report No.: R017615 Date: 19/09/2024 Page: 2 of 10

Ektimo

Document Information

Client Name: Nyrstar Hobart

Report Number: R017615

Date of Issue: 19 September 2024

Attention: Alex Lovibond

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Glenn Trenear Senior Air Monitoring Consultant

NATA

NATA Accredited Laboratory
No. 14601

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Report No.: R017615 Date: 19/09/2024 Page: 3 of 10

Ektimo

Table of Contents

1	E	recutive Summary	4
	1.1	Background	4
	1.2	Project Objective & Overview	4
	1.3	Licence Comparison	4
2	R	esults	
_	111		
	2.1	Cadmium Smelter Plant Scrubber Stack	5
3	Sá	ample Plane Compliance	7
	3.1	Cadmium Smelter Plant Scrubber Stack	7
4	Pl	ant Operating Conditions	7
5	Te	est Methods	7
6	Q	uality Assurance/Quality Control Information	8
7	D	efinitions	9
8	Α	ppendices	.10

Appendix A: Site Image

Appendix B: Weather Observations

Report No.: R017615 Date: 19/09/2024 Page: 4 of 10

1 Executive Summary

1.1 Background

Ektimo was engaged to retest emissions from the Cadmium Smelter Plant Scrubber Stack. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective & Overview

The objective of the project was to quantify emissions from one (1) discharge point to determine compliance with Nyrstar Hobart's Environmental Licence and meet NPI reporting requirements.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
		Total particulate matter
Cadmium Smelter Plant Scrubber Stack	29 August 2024	Metals
		Carbon dioxide (CO ₂) and oxygen (O ₂)

^{*} Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

1.3 Licence Comparison

The following licence comparison table shows all analytes are within the licence limit set by Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Particulates	mg/m³	100	2.6
Cadmium Smelter Plant Scrubber Stack	Metals - Pb, As, Sb, Cd, Hg ⁽¹⁾	mg/m³	5	≤0.6
Caumium smerter Plant Scrubber Stack	Metals - Hg	mg/m³	1	0.00051
	Metals - Cd	mg/m³	1	0.56

¹ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

 ${\it Refer to the Test Methods table for the measurement uncertainties}.$

Report No.: R017615 Date: 19/09/2024 Page: 5 of 10

2 Results

2.1 Cadmium Smelter Plant Scrubber Stack

Client Date 29/08/2024 Nyrstar Hobart Report R017615 Stack ID Cadmium Smelter Licence No. 7043-5 Location Ektimo Staff TAS G Trenear & V Liu State **Process Conditions** Fume extraction while furnace in operation. Metal addition occurred during this test.

Comments

The gas temperature of the sampling plane is below the dew point

Stack Parameters			
Moisture content, %v/v	1.7 (saturated)		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0605 & 0730		
Temperature, °C	13		
Velocity at sampling plane, m/s	14		
Volumetric flow rate, actual, m³/min	150		
Volumetric flow rate (wet STP), m³/min	140		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Gas Analyser Results		Average
	Sampling time	0618 - 0717
		Concentration
		% v/v
Carbon dioxide		<0.4
Oxygen		20.7

Report No.: R017615 Date: 19/09/2024 Page: 6 of 10

Date29/08/2024ClientNyrstar HobartReportR017615Stack IDCadmium Smelter

Licence No.7043-5LocationHobartEktimo StaffG Trenear & V LiuStateTAS

Process Conditions Fume extraction while furnace in operation. Metal addition occurred during this test.

Isokinetic Results	Resu	ilts	
Sampling time	0616-	0722	
	Concentration mg/m³	Mass Rate g/min	
Total particulate matter	2.6	0.36	
Aluminium	0.021	0.0029	
Antimony	<0.006	<0.0008	
Arsenic	<0.004	<0.0005	
Barium	0.0035	0.00048	
Beryllium	<0.0008	<0.0001	
Cadmium	0.56	0.077	
Calcium	0.28	0.038	
Chromium	0.0043	0.00059	
Cobalt	<0.001	<0.0001	
Copper	0.0053	0.00073	
ron	0.056	0.0077	
Lead	0.011	0.0015	
Lithium	<0.001	<0.0001	
Magnesium	<0.2	<0.03	
Manganese	0.034	0.0046	
Mercury	0.00051	0.00007	
Molybdenum	<0.002	<0.0003	
Nickel	0.0037	0.0005	
Phosphorus	< 0.03	<0.004	
Potassium	<0.2	<0.03	
Selenium	<0.006	<0.0008	
Silver	<0.001	<0.0002	
Sodium	<0.2	<0.03	
Thallium	<0.003	<0.0004	
Tin .	<0.003	<0.0004	
Vanadium	<0.002	<0.0002	
Zinc	0.11	0.015	
Sokinetic Sampling Parameters			
Sampling time, min	60)	
sokinetic rate, %	10	7	
Gravimetric analysis date (total particulate)	04-09-	2024	

Report No.: R017615 Date: 19/09/2024 Page: 7 of 10

Sample Plane Compliance

3.1 Cadmium Smelter Plant Scrubber Stack

Sampling Plane Details

Sampling plane dimensions Sampling plane area Sampling port size, number & depth Duct orientation & shape

Downstream disturbance Upstream disturbance No. traverses & points sampled

Sample plane conformance to AS 4323.1

470 mm 0.173 m² 4" BSP (x2), 85 mm Vertical Circular Bend 1D

Change in diameter 2 D 2 12

Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

Plant Operating Conditions

See Nyrstar Hobart records for complete process conditions.

Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA ac	credited
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture (stacks <60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	√ ^{††}
Total (gaseous & particulate) metals (Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, P, Se, Ag, Tl, Zn)	USEPA Method 29	Envirolab in-house methods Metals-006/020/021/022	15%	✓	✓‡
Total (gaseous & particulate) metals (Non- USEPA 29) (Al, Ca, Fe, Li, Mg, Mo, K, Na, Sn, V)	USEPA Method 29	Envirolab in-house methods Metals-006/020/021/022	15%	× ^{‡‡}	√ ‡
					29082

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor =

^{**} Gravimetric analysis conducted at the Ektimo VIC laboratory.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on:

^{- 13} September 2024 in report 361100.

^{**} Specified metals are not listed in USEPA Method 29 and therefore, are not covered by NATA accreditation for sampling.

^j Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

Report No.: R017615 Date: 19/09/2024 Page: 8 of 10

6 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

Report No.: R017615 Date: 19/09/2024 Page: 9 of 10

7 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry basis

ApproximatelyLess thanGreater than

≥ Greater than or equal to

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water.

AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half

of the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required

OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

Standard temperature and pressure. Gas volumes and co.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range

Report No.: R017615 Date: 19/09/2024 Page: 10 of 10

Ektimo

8 Appendices

Appendix A: Site Image

Image 1. Cadmium Smelter Plant Scrubber Stack

Report No.: R017615 **Date:** 19/09/2024

Ektimo

Appendix B: Weather Observations

Hobart, Tasmania

August 2024 Daily Weather Observations

Date	Day	Ten	ıps	Rain	Evap	Sun	Max	wind	gust			9:00	АМ					3:00	PM		
		B.O.L.	Man				Di-	Const	Times	T	DII	Cld	Dir	C1	MSLP	T	DU	CIA	Dir	C1	MCLD
		Min °C	Max °C	mm	mm	hours	Dir km/h	Spd	Time local	Temp °C	RH %	8th	km/h	Spd	hPa	Temp °C	RH %	Cld 8th	km/h	Spd	MSLP hPa
1	Th	2.8	12.2	0.2		Hours	NW	24	9:29	6	90	7	NW	13	1038	10.8	79	6	SSE	11	1036
2	Fr	0.8	14	0.2			N	41	14:01	4.3	97	1	NNW	9	1031	13.6	51	2	N	26	1026
3	Sa	4.1	14.1	0			NW	37	12:15	9.4	76	8	NW	17	1023	13.9	47	5	WNW	17	1022
4	Su	6.3	14.4	0			WNW	46	15:33	11	61	6	N	17	1020	14.1	51	3	WNW	17	1019
5	Мо	3	15.4	0			NW	41	12:56	9.5	73	7	NW	2	1019	14.8	49	3	NW	24	1016
6	Tu	8	16	0			NW	69	14:27	10.4	64	7	NNW	15	1013	10.8	75	7	NW	31	1009
7	We	8.2	15.7	0.4			W	70	3:14	12.9	57	3	SSW	6	1016	13.5	59	7	NW	17	1018
8	Th	6.1	14.4	0			N	44	17:40	8.8	86	8	NW	11	1019	13.9	59	7	N	20	1015
9	Fr	3.9	15.8	0.2			NW	37	10:34	11.1	67	2	NNE	11	1020	15.1	45	7	NNW	19	1019
10	Sa	9.7	18.6	0			NW	54	13:05	13.1	59	3	NNW	20	1023	17.1	50	5	NW	28	1021
11	Su	12.4	18.5	0			WNW	54	6:42	14.5	61	7	NNW	20	1025	17.2	46	7	WNW	20	1025
12	Мо	6.5	17.4	0			NNW	33	5:14	9.8	75	3	NNW	24	1027	16.8	54	7	NNW	13	1023
13	Tu	7.4	18.3	0			N	37	14:24	12.1	74	7	SE	9	1021	17.2	56	7	NNW	24	1017
14	We	11.6	20.1	0			N	39	0:17	13.2	81	7	Calm	1015	17	59	7	NW	13	1013	
15	Th	5.2	14.6	0			SSE	22	14:37	9.1	98	7	W	2	1018	12.9	85	5	SSE	13	1015
16	Fr	9.1	13.5	1.4			SE	22	11:52	11.5	99	8	WNW	2	1011	13	89	8	SSE	9	1007
17	Sa	8.1	12	5.4			S	50	15:02	11.6	99	8	S	15	1007	9.8	82	8	S	35	1010
18	Su	5.8	10.2	1			SSW	37	9:06	7.7	84	7	SSW	13	1020	9.4	64	7	SSW	19	1019
19	Мо	3.2	12.3	0			NNW	31	8:44	6.6	79	2	NW	22	1025	11.8	59	2	SE	9	1023
20	Tu	1.9	13.1	0.2			NW	24	11:10	7.5	85	7	NW	9	1019	12.1	79	8	NW	15	1013
21	We	7.5	18.2	2.2			NW	41	15:00	13.1	79	7	NNW	13	1003	17	51	6	NW	30	1002
22	Th	8.2	15.9	0			NW	87	14:46	11.5	55	1	NNW	28	1007	14	48	7	NW	56	1005
23	Fr	9.3	17	0			W	50	13:53	13.8	59	1	WNW	28	1012	16.4	56	5	W	20	1013
24	Sa	8.5	12.2	3.4			NW	26	22:12	10.1	100	8	SE	7	1009	11.5	95	8	S	7	1006
25	Su	7.5	18.7	6.6			N	43	14:09	10.9	90	6	NW	15	1007	17.3	65	7	NNW	24	1001
26	Мо	10.8	16.7	1.2			WNW	74	15:32	13.3	63	6	WNW	30	999.6	16.4	52	6	WNW	41	1001
27	Tu	12.7	19.8	0			NW	91	10:58	15.4	62	7	N	15	1000	16.6	57	7	N	37	992.9
28	We	7.1	11.6	8.6			NW	76	9:17	7.3	85	6	NW	33	984.7	9.2	69	1	NNW	31	987.1
29	Th	5.9	14.8	4			NW	56	7:33	10.4	64	3	WNW	35	1000	14.1	49	6	NW	19	998.5
30	Fr	10.4	13.5	9.2			WNW	78	12:32	12.4	60	1	NW	31	981.7	12.6	63	1	NW	41	981.7
31	Sa	6.3	12.9	5.6			NW	87	19:53	7.4	66	3	WNW	37	984.4	10.2	63	7	NW	46	984.6
									Stati	stics for A											
Mean		7	15.2							10.5	75	5		16	1013	13.9	61	5		23	1011
Lowest		8.0	10.2	0						4.3	55	1	Calm		981.7	9.2	45	1	S	7	981.7
Highest		12.7	20.1	9.2			NW	91		15.4	100	8	WNW	37	1038	17.3	95	8	NW	56	1036
Total	Total 49.8																				

IDCJDW7062.202408 Prepared at 13:03 UTC on Saturday 14 September 2024

Site name: HOBART AIRPORT Site number: 0944250 Latitude: 42.84 °S Longitude: 147.50 °E Elevation: 7 m

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA

Experts in air quality, odour and emission monitoring.

Emission Testing Report Round 2 - November/December 2024

Report: R016328

Nyrstar Hobart, Lutana

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

Document Information

Client Name: Nyrstar Hobart

Report Number: R016328

Date of Issue: 24 January 2025

Attention: Kylie Veale

Address: Risdon Road

Lutana TAS 7009

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Glenn Trenear Senior Air Monitoring Consultant Ilac-MRA

NATA

NATA Accredited Laboratory No. 14601

This document is confidential and is prepared for the exclusive use of Nyrstar Hobart and those granted permission by Nyrstar Hobart. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Table of Contents

1	Е	Executive Summary	4
	1.1	Background	4
	1.2	Project Objective & Overview	4
	1.3	Licence Comparison	5
2	F	Results	6
	2.1	Farral and A	,
	2.1	Foreshore A	
	2.2	Foreshore B Parageothite Dryer	
	2.3	9	
	2.4	Cadmium Smelter Plant Scrubber Stack	
	2.5	Copper Sulphate Crystalliser Plant Vent Stack	
	2.6	Casting Ventilation 1 - V1	
	2.7	Casting Ventilation 2 - V2	
	2.8	Roaster Baghouse	
	2.9	Zinc Fume Oxide Debagging Station	
		A Anode Casting	
		1 Zinc Plant 1 Baghouse - ZP1	
		2 Zinc Plant 3 Baghouse - ZP3	
		3 MZR Furnace Baghouse	
	2.14	4 MZR Dross Stack	
3	S	Sample Plane Compliance	24
	3.1	Foreshore A	24
	3.2	Foreshore B	24
	3.3	Parageothite Dryer	24
	3.4	Cadmium Smelter Plant Scrubber Stack	25
	3.5	Copper Sulphate Crystalliser Plant Vent Stack	25
	3.6	Casting Ventilation 1 - V1	25
	3.7	Casting Ventilation 2 - V2	26
	3.8	Roaster Baghouse	26
	3.9	Zinc Oxide Fume Debagging Station	26
	3.10	Anode Casting	27
	3.11	1 Zinc Plant 1 Baghouse - ZP1	27
	3.12	2 Zinc Plant 3 Baghouse - ZP3	27
	3.13	3 MZR Furnace Baghouse	28
	3.14	4 MZR Dross Stack	28
4	P	Plant Operating Conditions	28
5	т	Test Methods	20
J		I GOL IVIGUIOUO	∠ 7

6	Quality Assurance/Quality Control Information	29
7	Definitions	30
8	Appendices	31
Þ	Appendix A: Site Images	31
1	Appendix B: Weather Observations	33

1 Executive Summary

1.1 Background

Ektimo was engaged by Nyrstar Hobart to perform emission testing at their Lutana plant. Testing was carried out in accordance with Environmental Licence 7043/5.

1.2 Project Objective & Overview

The objective of the project was to quantify emissions from fourteen (14) discharge points, to determine compliance with Nyrstar Hobart's Environmental Licence.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*				
Foreshore A	13 November 2024	Total particulate matter Metals				
Foreshore B	13 November 2024	Sulfur dioxide, sulfur trioxide Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen				
Parageothite Dryer	11 November 2024					
Cadmium Smelter	13 November 2024	Total particulate matter				
Copper Sulphate Stack	5 December 2024	Metals Nitrogen oxides, carbon monoxide, carbon dioxide				
Casting Ventilation 1 - V1	12 November 2024	oxygen				
Casting Ventilation 2 - V2	12 November 2024					
Roaster Baghouse	3 December 2024	Total particulate matter Metals Nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, oxygen				
Zinc Oxide Debagging Station	13 November 2024					
Anode Casting	12 November 2024					
Zinc Plant 1 Baghouse - ZP1	11 November 2024	Total particulate matter Metals				
Zinc Plant 3 Baghouse - ZP3	11 November 2024	Nitrogen oxides, carbon monoxide, carbon dioxide, oxygen				
MZR Furnace Baghouse	12 November 2024	, 5 -				
MZR Dross Stack	12 November 2024					

^{*} Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

1.3 Licence Comparison

The following licence comparison table shows any analytes highlighted in orange are outside the licence limit set by the Tasmanian Environmental Protection Notice (EPN) 7043/5.

Emission Point / Monitoring Location	Parameter	Units	Licence limit	Detected values
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m³	100	2.2
Foreshore A (Tail Gas Scrubber) Stack	Oxides of nitrogen (as NO ₂)	g/m³	2	0.011
	Particulates	mg/m ³	100	1.9
	Sulphur dioxide	g/m³	7.2	0.053
	Sulfuric acid and Sulfur trioxide (SO ₃)	mg/m ³	100	3.1
Foreshore B (Tail Gas Scrubber) Stack	Oxides of nitrogen (as NO ₂)	g/m³	2	0.015
Forestione B (Tail Gas Scrubber) Stack	Particulates	mg/m ³	100	1.6
	Sulphur dioxide	g/m³	7.2	0.084
Anode Casting Plant Exhaust				4.3
V1 Furnace Stack				<3
V2 Furnace Stack				<2
Zinc Dust Plant Baghouse 1 Stack				5
Zinc Dust Plant Bagouse 3 Stack	Particulates	mg/m ³	100	6.9
Cadmium Smelter Plant Scrubber Stack				8.2
Copper Sulphate Crystalliser Plant				2.6
Roaster Baghouse				6.6
Paragoethite Dryer Baghouse				<2
Anode Casting Plant Exhaust				≤0.18
V1 Furnace Stack				≤0.02
V2 Furnace Stack			5	≤0.042
Zinc Dust Plant Baghouse 1 Stack		mg/m ³		≤0.04
Zinc Dust Plant Baghouse 3 Stack	Metals - Pb, As, Sb, Cd, Hg (1)			≤0.07
Cadmium Smelter Plant Scrubber Stack				≤2.2
Copper Sulphate Crystalliser Plant				≤0.1
Roaster Baghouse				≤0.26
Paragoethite Dryer Baghouse				≤0.094
Anode Casting Plant Exhaust		mg/m³	1	<0.001
V1 Furnace Stack				<0.0007
V2 Furnace Stack				<0.0008
Zinc Dust Plant Baghouse 1 Stack				<0.0007
Zinc Dust Plant Baghouse 3 Stack	Metals - Hg			<0.0008
Cadmium Smelter Plant Scrubber Stack				<0.0009
Copper Sulphate Crystalliser Plant				0.0057
Roaster Baghouse				0.0008
Paragoethite Dryer Baghouse				<0.002
Anode Casting Plant Exhaust				0.0064
V1 Furnace Stack	1			0.0018
V2 Furnace Stack		mg/m³	1	0.0048
Zinc Dust Plant Baghouse 1 Stack				0.0039
Zinc Dust Plant Baghouse 3 Stack	Metals - Cd			0.0021
Cadmium Smelter Plant Scrubber Stack	1			2.2
Copper Sulphate Crystalliser Plant				0.078
Roaster Baghouse	1			0.026
Paragoethite Dryer Baghouse				0.0056

¹ Total concentration of metals combined.

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

2 Results

2.1 Foreshore A

Date 13/11/2024 Nyrstar Hobart Client R016328 Report Stack ID Foreshore A Licence No. 7043-5 Location Hobart **Ektimo Staff** G Trenear & T Bakas State TAS

Unit 5 producing 62,000 m3/hr (not running) & Unit 6 producing 106,000 m3/hr of

Stack Parameters		
Moisture content, %v/v	1.9	
Gas molecular weight, g/g mole	28.4 (wet)	28.6 (dry)
Gas density at STP, kg/m³	1.27 (wet)	1.27 (dry)
Gas density at discharge conditions, kg/m³	1.17	
Gas Flow Parameters		
Flow measurement time(s) (hhmm)	0908, 1110 & 1306	
Temperature, °C	21	
Ambient pressure, kPa	101	
Stack pressure, kPa	101	
Velocity at sampling plane, m/s	16	
Volumetric flow rate, actual, m³/min	1800	
Volumetric flow rate (wet STP), m³/min	1700	
Volumetric flow rate (dry STP), m³/min	1600	
Mass flow rate (wet basis), kg/h	130000	

Gas Analyser Results	Average
Sampling time	ime 0927 - 1026
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO ₂)	11 18
Carbon monoxide	<6 <10
	Concentration % v/v
Carbon dioxide	<0.4
Oxygen	9.6

Date 13/11/2024 Client Nyrstar Hobart Stack ID Report R016328 Foreshore A Licence No. 7043-5 Location Hobart Ektimo Staff TAS State G Trenear & T Bakas

Unit 5 producing 62,000 m3/hr (not running) & Unit 6 producing 106,000 m3/hr of

Isokinetic Results	Resu	lts
Sampling time	0920-1	102
	Concentration mg/m³	Mass Rate g/min
Antimony	<0.003	<0.006
Arsenic	<0.002	<0.003
Beryllium	< 0.0004	<0.0007
Cadmium	0.0029	0.0047
Chromium	0.0039	0.0064
Cobalt	<0.0006	<0.0009
Copper	0.0011	0.0018
Lead	0.0068	0.011
Manganese	0.026	0.043
Mercury	<0.0004	<0.0007
Nickel	0.0021	0.0035
Phosphorus	<0.02	< 0.03
Selenium	< 0.004	<0.006
Tin	< 0.002	<0.003
Vanadium	< 0.0009	<0.001
Zinc	0.23	0.38
Total of Sb, As, Cd, Pb, Hg	≤0.016	≤0.026
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	99	

Isokinetic Results	Results	
Sampling time	1120-1302	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	1.9 3.2	
Sulfur dioxide	53 87	
Sulfur trioxide	2.2 3.6	
Isokinetic Sampling Parameters		
Sampling time, min 100		
sokinetic rate, % 95		
Gravimetric analysis date (total particulate)	21-11-2024	

2.2 Foreshore B

 Date
 13/11/2024
 Client
 Nyrstar Hobart

 Report
 R016328
 Stack ID
 Foreshore B

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Unit 5 producing 62,000 m3/hr (not running) & Unit 6 producing 106,000 m3/hr of

Stack Parameters			
Moisture content, %v/v	2		
Gas molecular weight, g/g mole	28.3 (wet)	28.6 (dry)	
Gas density at STP, kg/m³	1.26 (wet)	1.27 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0910, 1112 & 1308		
Temperature, °C	21		
Ambient pressure, kPa	101		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	1700		
Volumetric flow rate (wet STP), m³/min	1600		
Volumetric flow rate (dry STP), m³/min	1500		
Mass flow rate (wet basis), kg/h	120000		

Gas Analyser Results		Avera	age
San	npling time	1041 -	1140
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		15	22
Carbon monoxide		<6	<10
		Concen % v	
Carbon dioxide		<0.4	
Oxygen		9.2	

Date 13/11/2024 Client Nyrstar Hobart Report R016328 Stack ID Foreshore B Licence No. 7043-5 Location Hobart Ektimo Staff TAS State G Trenear & T Bakas

Unit 5 producing 62,000 m3/hr (not running) & Unit 6 producing 106,000 m3/hr of

Isokinetic Results	Results	
Sampling time	0920-1102	
	Concentration Mass Rate mg/m³ g/min	
Antimony	<0.003 <0.005	
Arsenic	0.0046 0.007	
Beryllium	<0.0004 <0.0006	
Cadmium	0.26 0.4	
Chromium	0.012 0.018	
Cobalt	0.0018 0.0028	
Copper	0.0034 0.0052	
Lead	0.02 0.03	
Manganese	0.039 0.06	
Mercury	<0.0005 <0.0007	
Nickel	0.0088 0.014	
Phosphorus	0.034 0.051	
Selenium	<0.003 <0.005	
Tin	<0.003 <0.004	
Vanadium	<0.001 <0.002	
Zinc	1.1 1.7	
Total of Sb, As, Cd, Pb, Hg	≤0.29 ≤0.44	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	94	

Isokinetic Results	Results	
Sampling time	1120-1302	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	1.6 2.5	
Sulfur dioxide	84 130	
Sulfur trioxide	3.1 4.8	
Isokinetic Sampling Parameters		
Sampling time, min	100	
Isokinetic rate, %	99	
Gravimetric analysis date (total particulate)	21-11-2024	

2.3 Parageothite Dryer

Date11/11/2024ClientNyrstar HobartReportR016328Stack IDParageothite Dryer

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions 7 m3/hr of dirt and 2 m3/hr of bypass flow into the drum.

Stack Parameters			
Moisture content, %v/v	28		
Gas molecular weight, g/g mole	26.1 (wet)	29.3 (dry)	
Gas density at STP, kg/m³	1.16 (wet)	1.31 (dry)	
Gas density at discharge conditions, kg/m³	0.92		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1515 & 1640		
Temperature, °C	75		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	8.5		
Volumetric flow rate, actual, m³/min	360		
Volumetric flow rate (wet STP), m³/min	280		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/h	20000		

Gas Analyser Results		Average	
	Sampling time	1523 - 1625	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		49 9.9	
Carbon monoxide		<6 <1	
		Concentration	
		% v/v	
Carbon dioxide		3.6	
Oxygen		15	

Isokinetic Results	Results	
Sampling time	1530-1632	
	Concentration Mass Rate	
	mg/m³ g/min	
Total particulate matter	<2 <0.5	
Antimony	<0.007 <0.001	
Arsenic	0.0078 0.0016	
Beryllium	<0.001 <0.0002	
Cadmium	0.0056 0.0011	
Chromium	0.013 0.0027	
Cobalt	<0.002 <0.0005	
Copper	0.013 0.0026	
Lead	0.072 0.015	
Manganese	0.069 0.014	
Mercury	<0.002 <0.0004	
Nickel	0.062 0.013	
Phosphorus	<0.04 <0.009	
Selenium	0.018 0.0037	
Tin	<0.003 <0.0006	
Vanadium	<0.002 <0.0004	
Zinc	0.24 0.049	
Total of Sb, As, Cd, Pb, Hg	≤0.094 ≤0.019	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	106	
Gravimetric analysis date (total particulate)	21-11-2024	

2.4 Cadmium Smelter Plant Scrubber Stack

Date13/11/2024ClientNyrstar HobartReportR016328Stack IDCadmium Smelter

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Fume extraction while furnace in operation. Metal addition occurred during this test.

Stack Parameters			
Moisture content, %v/v	3.7		
Gas molecular weight, g/g mole	28.6 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.13		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0650 & 0804		
Temperature, °C	34		
Ambient pressure, kPa	101		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	170		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	140		
Mass flow rate (wet basis), kg/h	11000		

Gas Analyser Results		Average	
	Sampling time	0652 - 0721	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		4.7 0.68	
Carbon monoxide		<6 <0.9	
		Concentration	
		% v/v	
Carbon dioxide		0.4	
Oxygen		20.5	

Isokinetic Results	Result	CS .
Sampling time	0655-07	57
	Concentration	Mass Rate
	mg/m³	g/min
Total particulate matter	8.2	1.2
Antimony	<0.007	<0.001
Arsenic	<0.003	<0.0005
Beryllium	< 0.0009	<0.0001
Cadmium	2.2	0.31
Chromium	0.0068	0.00098
Cobalt	0.0082	0.0012
Copper	0.0051	0.00074
Lead	0.032	0.0046
Manganese	0.065	0.0093
Mercury	<0.0009	<0.0001
Nickel	0.0076	0.0011
Phosphorus	< 0.04	< 0.006
Selenium	<0.007	< 0.001
Tin	< 0.003	<0.0005
Vanadium	<0.002	<0.0003
Zinc	0.85	0.12
Total of Sb, As, Cd, Pb, Hg	≤2.2	≤0.32
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	100	
Gravimetric analysis date (total particulate)	22-11-2024	

2.5 Copper Sulphate Crystalliser Plant Vent Stack

Date5/12/2024ClientNyrstar HobartReportR016328Stack IDCopper Sulphate Stack

Licence No.7043-5LocationHobartEktimo StaffNick Heatley, Leigh FryStateTAS

Production rate - 13.1 tonnes/day, Dryer Outlet Temperature - 45 deg C, Feed rate

Process Conditions into Dryer - 30%

Stack Parameters			
Moisture content, %v/v	13		
Gas molecular weight, g/g mole	27.6 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.23 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.04		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0919 & 1030		
Temperature, °C	52		
Ambient pressure, kPa	101		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	180		
Volumetric flow rate (wet STP), m³/min	150		
Volumetric flow rate (dry STP), m³/min	130		
Mass flow rate (wet basis), kg/h	11000		

Gas Analyser Results		Average	
	Sampling time	0929 - 1029	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		<4 <0.5	
Carbon monoxide		<6 <0.8	
		Concentration	
		% v/v	
Carbon dioxide		<0.4	
Oxygen		20.5	

Isokinetic Results	Results		
Sampling time	0925-1027		
	Concentration Mass Rate mg/m³ g/min		
Total particulate matter	2.6 0.35		
Antimony	<0.006 <0.0008		
Arsenic	<0.003 <0.0004		
Beryllium	<0.0008 <0.0001		
Cadmium	0.078 0.01		
Chromium	0.024 0.0032		
Cobalt	0.0068 0.0009		
Copper	0.077 0.01		
Lead	0.035 0.0046		
Manganese	0.033 0.0043		
Mercury	0.0057 0.00076		
Nickel	0.086 0.011		
Phosphorus	0.11 0.014		
Selenium	<0.009 <0.001		
Tin	<0.003 <0.0004		
Vanadium	<0.002 <0.0002		
Zinc	0.3 0.04		
Total of Sb, As, Cd, Pb, Hg	≤0.13 ≤0.017		
Isokinetic Sampling Parameters			
Sampling time, min	60		
Isokinetic rate, %	102		
Gravimetric analysis date (total particulate)	10-12-2024		

2.6 Casting Ventilation 1 - V1

 Date
 12/11/2024
 Client
 Nyrstar Hobart

 Report
 R016328
 Stack ID
 Casting Ventilation 1 - V1

 Licence No.
 7043-5
 Location
 Hobart

Ektimo Staff G Trenear & T Bakas State TAS

Process Conditions Casting area in normal operation. 241106

Stack Parameters			
Moisture content, %v/v	1.4		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16	•	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1315 & 1433		
Temperature, °C	29		
Ambient pressure, kPa	102		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/min	230		
Volumetric flow rate (wet STP), m³/min	200		
Volumetric flow rate (dry STP), m³/min	200		
Mass flow rate (wet basis), kg/h	16000		

Gas Analyser Results		Average	
	Sampling time	1332 - 1400	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		<4 <0.8	
Carbon monoxide		<6 <1	
		Concentration	
		% v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results	
Sampling time	1325-1425	
	Concentration Mass Rate	
	mg/m³ g/min	
Total particulate matter	<3 <0.5	
Antimony	<0.006 <0.001	
Arsenic	<0.003 <0.0006	
Beryllium	<0.0008 <0.0002	
Cadmium	0.0018 0.00037	
Chromium	0.0041 0.00081	
Cobalt	<0.001 <0.0002	
Copper	0.0032 0.00063	
Lead	0.017 0.0034	
Manganese	0.039 0.0078	
Mercury	<0.0007 <0.0001	
Nickel	<0.003 <0.0005	
Phosphorus	<0.03 <0.005	
Selenium	<0.006 <0.001	
Tin	<0.003 <0.0006	
Vanadium	<0.002 <0.0003	
Zinc	0.91 0.18	
Total of Sb, As, Cd, Pb, Hg	≤0.029 ≤0.0057	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	101	
Gravimetric analysis date (total particulate)	21-11-2024	

2.7 Casting Ventilation 2 - V2

 Date
 12/11/2024
 Client
 Nyrstar Hobart

 Report
 R016328
 Stack ID
 Casting Ventilation 2 - V2

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions Casting area in normal operation. 241100

Stack Parameters			
Moisture content, %v/v	2.2		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.16		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1320 & 1429		
Temperature, °C	29		
Ambient pressure, kPa	102		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/min	200		
Volumetric flow rate (wet STP), m³/min	180		
Volumetric flow rate (dry STP), m³/min	180		
Mass flow rate (wet basis), kg/h	14000		

Gas Analyser Results		Avera	age
	Sampling time	1415 -	1444
		Concentration	Mass Rate
Combustion Gases		mg/m³	g/min
Nitrogen oxides (as NO ₂)		<4	<0.7
Carbon monoxide		<6	<1
		Concen-	tration
		% v.	/v
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results
Sampling time	1325-1425
	Concentration Mass Rate
	mg/m³ g/min
Total particulate matter	<2 <0.3
Antimony	<0.005 <0.0008
Arsenic	<0.002 <0.0004
Beryllium	<0.0006 <0.0001
Cadmium	0.0048 0.00085
Chromium	0.0056 0.00098
Cobalt	<0.0008 <0.0001
Copper	0.0029 0.00051
Lead	0.03 0.0052
Manganese	0.031 0.0055
Mercury	<0.0008 <0.0001
Nickel	0.0048 0.00086
Phosphorus	0.035 0.0061
Selenium	<0.005 <0.0008
Tin	<0.003 <0.0005
Vanadium	<0.001 <0.0002
Zinc	0.71 0.13
Total of Sb, As, Cd, Pb, Hg	≤0.042 ≤0.0074
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	100
Gravimetric analysis date (total particulate)	21-11-2024

Roaster Baghouse

Date 3/12/2024 Client Nyrstar Hobart Report R016328 Stack ID Roaster Baghouse

Licence No. 7043-5 Location Hobart Nick Heatley, Leigh Fry State TAS
Roaster 6 - 56 t/hr, Roaster 5 - 0 t/hr (Conveyor in operation), fumes were on. Ektimo Staff

Process Conditions

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	1.06		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1415 & 1610		
Temperature, °C	54		
Ambient pressure, kPa	99		
Stack pressure, kPa	99		
Velocity at sampling plane, m/s	6.5		
Volumetric flow rate, actual, m³/min	45		
Volumetric flow rate (wet STP), m³/min	37		
Volumetric flow rate (dry STP), m³/min	37		
Mass flow rate (wet basis), kg/h	2900		

Gas Analyser Results		Average	
	Sampling time	1507 - 1607	
		Concentration	Mass Rate
Combustion Gases		mg/m³	g/min
Nitrogen oxides (as NO ₂)		<4	<0.2
Sulfur dioxide		650	24
Carbon monoxide		<6	<0.2
		Concen	tration
		% v	/v
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results
Sampling time	1450-1556
	Concentration Mass Rate
	mg/m³ g/min
Total particulate matter	6.6 0.24
Antimony	<0.005 <0.0002
Arsenic	0.0036 0.00013
Beryllium	<0.0007 <0.00003
Cadmium	0.026 0.00097
Chromium	0.0013 0.000046
Cobalt	<0.001 <0.00004
Copper	0.021 0.00077
Lead	0.23 0.0083
Manganese	0.019 0.00069
Mercury	0.0008 0.000029
Nickel	<0.002 <0.00007
Phosphorus	<0.02 <0.0008
Selenium	<0.006 <0.0002
Tin	<0.002 <0.00009
Vanadium	<0.001 <0.00005
Zinc	2.6 0.095
Total Type 1 Substances	≤0.26 ≤0.0096
Isokinetic Sampling Parameters	
Sampling time, min	64
Isokinetic rate, %	101
Gravimetric analysis date (total particulate)	10-12-2024

2.9 Zinc Fume Oxide Debagging Station

Date13/11/2024ClientNyrstar Hobart

Report R016328 Stack ID Zinc Oxide Fume Debagging Station

 Licence No.
 7043-5
 Location
 Hobart

 Ektimo Staff
 G Trenear & T Bakas
 State
 TAS

Process Conditions Fume unloading for duration of test.

Comments

Afterflows could not be recorded as this is a batch process.

Stack Parameters			
Moisture content, %v/v	1.9		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1411		
Temperature, °C	27		
Ambient pressure, kPa	101		
Stack pressure, kPa	101		
Velocity at sampling plane, m/s	4.6		
Volumetric flow rate, actual, m³/min	14		
Volumetric flow rate (wet STP), m³/min	12		
Volumetric flow rate (dry STP), m³/min	12		
Mass flow rate (wet basis), kg/h	950		

Gas Analyser Results		Average	
	Sampling time	1412 - 1441	
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.05
Carbon monoxide		<6	<0.08
		Concen % v.	
Carbon dioxide		<0.4	
Oxygen		20.9	

Date 13/11/2024 Client Nyrstar Hobart

Zinc Oxide Fume Debagging Station Report R016328 Stack ID

Licence No. 7043-5 Location Ektimo Staff G Trenear & T Bakas Fume unloading for duration of test. State

Process Conditions

Isokinetic Results	Results	
Sampling time	1412-1440	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	<5 <0.06	
Antimony	<0.01 <0.0002	
Arsenic	<0.009 <0.0001	
Beryllium	<0.002 <0.00002	
Cadmium	0.0075 0.000091	
Chromium	0.0089 0.00011	
Cobalt	<0.002 <0.00003	
Copper	0.0053 0.000064	
Lead	0.13 0.0016	
Manganese	0.02 0.00024	
Mercury	<0.002 <0.00002	
Nickel	0.0058 0.000069	
Phosphorus	<0.08 <0.0009	
Selenium	<0.01 <0.0002	
Tin	<0.008 <0.00009	
Vanadium	<0.004 <0.00004	
Zinc	0.81 0.0097	
Total of Sb, As, Cd, Pb, Hg	≤0.17 ≤0.002	
Isokinetic Sampling Parameters		
Sampling time, min	32	
Isokinetic rate, %	107	
Gravimetric analysis date (total particulate)	22-11-2024	

2.10 Anode Casting

Date	12/11/2024	Client	Nyrstar Hobart	
Report	R016328	Stack ID	Anode Casting	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Casting area in normal operation.			241106

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0733 & 0847		
Temperature, °C	21		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	3.4		
Volumetric flow rate, actual, m³/min	33		
Volumetric flow rate (wet STP), m³/min	30		
Volumetric flow rate (dry STP), m³/min	30		
Mass flow rate (wet basis), kg/h	2300		

Gas Analyser Results		Average	
	Sampling time	0741 - 0810	
		Concentration Mass Rate	
Combustion Gases		mg/m³ g/min	
Nitrogen oxides (as NO ₂)		<4 <0.1	
Carbon monoxide		<6 <0.2	
		Concentration	
		% v/v	
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results
Sampling time	0740-0840
	Concentration Mass Rate
	mg/m³ g/min
Total particulate matter	4.3 0.13
Antimony	<0.007 <0.0002
Arsenic	0.0038 0.00011
Beryllium	<0.0009 <0.00003
Cadmium	0.0064 0.00019
Chromium	0.0048 0.00014
Cobalt	<0.001 <0.00004
Copper	0.011 0.00031
Lead	0.17 0.005
Manganese	0.13 0.0039
Mercury	<0.001 <0.00003
Nickel	0.0059 0.00018
Phosphorus	<0.03 <0.0009
Selenium	<0.008 <0.0002
Tin	<0.003 <0.0001
Vanadium	<0.002 <0.00006
Zinc	1.7 0.05
Total of Sb, As, Cd, Pb, Hg	≤0.19 ≤0.0055
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	101
Gravimetric analysis date (total particulate)	21-11-2024

2.11 Zinc Plant 1 Baghouse - ZP1

Date 11/11/2024 Client Nyrstar Hobart

Report R016328 Stack ID Zinc Plant 1 Baghouse - ZP 1

Licence No. 7043-5 Location Hobart G Trenear & T Bakas Normal production in Zinc Plant 1 area. Ektimo Staff State

Process Conditions

Stack Parameters			
	4.4		
Moisture content, %v/v	1.1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.07		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1309 & 1425		
Temperature, °C	61		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	9.8		
Volumetric flow rate, actual, m³/min	110		
Volumetric flow rate (wet STP), m³/min	94		
Volumetric flow rate (dry STP), m³/min	93		
Mass flow rate (wet basis), kg/h	7300		

Gas Analyser Results		Average	
	Sampling time	1338 - 1407	
		Concentration	Mass Rate
Combustion Gases		mg/m³	g/min
Nitrogen oxides (as NO ₂)		<4	< 0.4
Carbon monoxide		<6	<0.6
		Concen	tration
		% v	/v
Carbon dioxide		<0.4	
Oxygen		20.9	

Isokinetic Results	Results	
Sampling time	1315-1420	
	Concentration Mass Rate	
	mg/m³ g/min	
Total particulate matter	5 0.47	
Antimony	<0.006 <0.0006	
Arsenic	<0.003 <0.0002	
Beryllium	<0.0008 <0.00007	
Cadmium	0.0039 0.00036	
Chromium	<0.002 <0.0002	
Cobalt	<0.001 <0.00009	
Copper	0.0021 0.00019	
Lead	0.035 0.0033	
Manganese	0.02 0.0018	
Mercury	<0.0007 <0.00007	
Nickel	0.0046 0.00043	
Phosphorus	<0.03 <0.002	
Selenium	<0.006 <0.0006	
Tin	<0.003 <0.0002	
Vanadium	<0.002 <0.0002	
Zinc	2.6 0.24	
Total of Sb, As, Cd, Pb, Hg	≤0.049 ≤0.0045	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	101	
Gravimetric analysis date (total particulate)	21-11-2024	

2.12 Zinc Plant 3 Baghouse - ZP3

Date	11/11/2024	Client	Nyrstar Hobart	
Report	R016328	Stack ID	Zinc Plant 3 Baghouse - ZP 3	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	Normal production in Zinc Plant 3 area.			241106

Stack Parameters			
Moisture content, %v/v	0.74		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.04		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1240 & 1418		
Temperature, °C	66		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	15		
Volumetric flow rate, actual, m³/min	57		
Volumetric flow rate (wet STP), m³/min	46		
Volumetric flow rate (dry STP), m³/min	46		
Mass flow rate (wet basis), kg/h	3600		

Gas Analyser Results		Aver	age
	Sampling time	1301 -	1333
Combustion Gases		Concentration mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		<4	<0.2
Carbon monoxide		<6	<0.3
		Concen % v	
Carbon dioxide		<0.	.4
Oxygen		20.9	

Isokinetic Results	Results	
Sampling time	1250-1356	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	6.9 0.32	
Antimony	<0.007 <0.0003	
Arsenic	<0.003 <0.0001	
Beryllium	<0.0008 <0.00004	
Cadmium	0.0021 0.000097	
Chromium	0.0026 0.00012	
Cobalt	<0.001 <0.00005	
Copper	0.0028 0.00013	
Lead	0.065 0.003	
Manganese	0.028 0.0013	
Mercury	<0.0008 <0.00004	
Nickel	0.0028 0.00013	
Phosphorus	<0.03 <0.001	
Selenium	<0.007 <0.0003	
Tin	<0.003 <0.0001	
Vanadium	<0.002 <0.00008	
Zinc	4.6 0.21	
Total of Sb, As, Cd, Pb, Hg	≤0.078 ≤0.0036	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	99	
Gravimetric analysis date (total particulate)	21-11-2024	

2.13 MZR Furnace Baghouse

Date	12/11/2024	Client	Nyrstar Hobart	
Report	R016328	Stack ID	MZR Furnace	
Licence No.	7043-5	Location	Hobart	
Ektimo Staff	G Trenear & T Bakas	State	TAS	
Process Conditions	MZR Furnace in operation.			241106

Stack Parameters			
Moisture content, %v/v	2.6		
Gas molecular weight, g/g mole	28.8 (wet)	29.1 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.93		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1018 & 1145		
Temperature, °C	96		
Ambient pressure, kPa	102		
Stack pressure, kPa	99		
Velocity at sampling plane, m/s	6.4		
Volumetric flow rate, actual, m³/min	76		
Volumetric flow rate (wet STP), m³/min	55		
Volumetric flow rate (dry STP), m³/min	54		
Mass flow rate (wet basis), kg/h	4200		

Gas Analyser Results		Average	
	Sampling time	1030 - 1059	
Combustion Gases		Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)		12 0.64	
Sulfur dioxide		<6 <0.3	
Carbon monoxide		<6 <0.3	
		Concentration	
		% v/v	
Carbon dioxide		1.3	
Oxygen		18.8	

Isokinetic Results	Results	
Sampling time	1025-1131	
	Concentration Mass Rate mg/m³ g/min	
Total particulate matter	23 1.2	
Antimony	<0.006 <0.0003	
Arsenic	0.0037 0.0002	
Beryllium	<0.0008 <0.00004	
Cadmium	0.031 0.0017	
Chromium	0.0071 0.00038	
Cobalt	<0.001 <0.00007	
Copper	0.0096 0.00052	
Lead	0.051 0.0028	
Manganese	0.16 0.0084	
Mercury	<0.0007 <0.00004	
Nickel	0.0084 0.00045	
Phosphorus	0.033 0.0018	
Selenium	<0.009 <0.0005	
Tin	<0.003 <0.0002	
Vanadium	<0.002 <0.00009	
Zinc	13 0.67	
Total of Sb, As, Cd, Pb, Hg	≤0.094 ≤0.005	
Isokinetic Sampling Parameters		
Sampling time, min	64	
Isokinetic rate, %	107	
Gravimetric analysis date (total particulate)	22-11-2024	

2.14 MZR Dross Stack

 Date
 12/11/2024
 Client
 Nyrstar Hobart

 Report
 R016328
 Stack ID
 MZR Dross Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

 Process Conditions
 MZR Furnace in operation.
 24

Comments

No afterflows were recorded as this a batch process

Stack Parameters			
Moisture content, %v/v	1.7		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.15		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1055		
Temperature, °C	24		
Ambient pressure, kPa	102		
Stack pressure, kPa	98		
Velocity at sampling plane, m/s	16		
Volumetric flow rate, actual, m³/min	190		
Volumetric flow rate (wet STP), m³/min	170		
Volumetric flow rate (dry STP), m³/min	170		
Mass flow rate (wet basis), kg/h	13000		

Gas Analyser Results	Average	
Sampling time	1112 - 1141	
Combustion Gases	Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)	<4 <0.7	
Carbon monoxide	<6 <1	
	Concentration % v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

 Date
 12/11/2024
 Client
 Nyrstar Hobart

 Report
 R016328
 Stack ID
 MZR Dross Stack

Licence No.7043-5LocationHobartEktimo StaffG Trenear & T BakasStateTAS

Process Conditions MZR Furnace in operation.

Isokinetic Results	Results	
Sampling time	1055-1149	
	Concentration Mass Rate	
	mg/m³ g/min	
Total particulate matter	<3 <0.5	
Antimony	<0.008 <0.001	
Arsenic	<0.003 <0.0006	
Beryllium	<0.001 <0.0002	
Cadmium	0.007 0.0012	
Chromium	0.0022 0.00036	
Cobalt	<0.001 <0.0002	
Copper	0.0048 0.00079	
Lead	0.027 0.0045	
Manganese	0.037 0.0062	
Mercury	<0.0009 <0.0001	
Nickel	0.0064 0.0011	
Phosphorus	0.053 0.0088	
Selenium	<0.008 <0.001	
Tin	<0.003 <0.0006	
Vanadium	<0.002 <0.0003	
Zinc	0.76 0.13	
Total of Sb, As, Cd, Pb, Hg	≤0.046 ≤0.0077	
Isokinetic Sampling Parameters		
Sampling time, min	56	
Isokinetic rate, %	98	
Gravimetric analysis date (total particulate)	21-11-2024	

3 Sample Plane Compliance

3.1 Foreshore A

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

1.84 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

1530 mm

4" Flange (x2), 150 mm

Vertical Circular

Bend 1 D

Centrifugal fan 3 D

2 20

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.2 Foreshore B

Sampling Plane Details

Sampling plane dimensions 1530 mm Sampling plane area 1.84 m² Sampling port size, number & depth 4" Flange (x2), 150 mm Vertical Circular Duct orientation & shape Downstream disturbance Bend 1 D Upstream disturbance Centrifugal fan 3 D No. traverses & points sampled 2 20 Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The number of points sampled is less than the requirement

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.3 Parageothite Dryer

Sampling Plane Details

Sampling plane dimensions 950 mm 0.709 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 50 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D 2 12 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.4 Cadmium Smelter Plant Scrubber Stack

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

470 mm

470 mm

487 BSP (x2), 85 mm

Vertical Circular

Bend 1 D

Change in diameter 2 D

No. traverses & points sampled

2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.5 Copper Sulphate Crystalliser Plant Vent Stack

Sampling Plane Details

Sampling plane dimensions 500 mm 0.196 m² Sampling plane area Sampling port size, number & depth 4" Flange (x2), 100 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Bend 4 D Upstream disturbance 2 12 No. traverses & points sampled Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The highest to lowest gas velocity ratio exceeds 1.6:1

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.6 Casting Ventilation 1 - V1

Sampling Plane Details

Sampling plane dimensions 635 mm Sampling plane area 0.317 m² Sampling port size, number & depth 4" Flange (x1), 245 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 2 D Upstream disturbance Centrifugal fan 2 D No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.7 Casting Ventilation 2 - V2

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.278 m²

Sampling port size, number & depth

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

Vertical Circular

Exit 2 D

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1

Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.8 Roaster Baghouse

Sampling Plane Details

Sampling plane dimensions 385 mm Sampling plane area 0.116 m² 4" BSP (x2), 105 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Exit >2 D Upstream disturbance Centrifugal fan >6 D 2 8 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.9 Zinc Oxide Fume Debagging Station

Sampling Plane Details

Sampling plane dimensions 250 mm 0.0491 m² Sampling plane area Sampling port size, number 3" Flange (x4) Duct orientation & shape Vertical Circular Downstream disturbance Cowl >2 D Upstream disturbance Bend >6 D 2 4 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.10 Anode Casting

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

O.159 m²

Sampling port size, number

Duct orientation & shape

Vertical Circular

Downstream disturbance

Upstream disturbance

Centrifugal fan 2 D

No. traverses & points sampled

Sample plane conformance to AS 4323.1

As mm

As 50 mm

O.159 m²

Flange (x1)

Vertical Circular

Exit 2 D

Centrifugal fan 2 D

Non-conforming

Comments

The number of traverses sampled is less than the requirement The number of points sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.11 Zinc Plant 1 Baghouse - ZP1

Sampling Plane Details

390 x 500 mm Sampling plane dimensions Sampling plane area 0.195 m² Sampling port size, number 1" Holes (x3) Duct orientation & shape Vertical Rectangular Downstream disturbance Bend >2 D Upstream disturbance Bend >6 D 3 6 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

3.12 Zinc Plant 3 Baghouse - ZP3

Sampling Plane Details

Sampling plane dimensions 285 mm 0.0638 m² Sampling plane area 2" Holes (x2) Sampling port size, number Horizontal Circular Duct orientation & shape Downstream disturbance Bend 1 D Upstream disturbance Bend 4 D 2 8 No. traverses & points sampled Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D. The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D.

3.13 MZR Furnace Baghouse

Sampling Plane Details

Sampling plane dimensions

Sampling plane area

0.196 m²

Sampling port size, number & depth

Duct orientation & shape

Downstream disturbance

Upstream disturbance

No. traverses & points sampled

500 mm

Vertical Circular

Bend 2 D

Bend 6 D

No. traverses & points sampled

2 8

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

3.14 MZR Dross Stack

Sampling Plane Details

Sampling plane dimensions 500 mm Sampling plane area 0.196 m² 4" BSP (x2) Sampling port size, number Duct orientation & shape Vertical Circular Downstream disturbance Bend >2 D Upstream disturbance Junction >6 D 2 8 No. traverses & points sampled Sample plane conformance to AS 4323.1 Ideal sampling plane

4 Plant Operating Conditions

See Nyrstar Hobart records for complete process conditions.

5 Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling method	Analysis method	Uncertainty*	NATA ac Sampling	credited Analysis
Sampling points - Selection	AS 4323.1	NA	NA	✓	NA
Flow rate & velocity	AS 4323.1	AS 4323.1	8%, 7%	✓	✓
Moisture	USEPA Method 4	USEPA Method 4	8%	✓	✓
Moisture (stacks < 60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j
Molecular weight	NA	USEPA Method 3	not specified	NA	✓
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Total particulate matter	AS 4323.2	AS 4323.2	7%	✓	✓ ^{††}
Total (gaseous & particulate) metals (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, P, Se, Zn)	USEPA Method 29	Envirolab in-house methods Metals-020/021/022	15%	✓	√ ‡
Total (gaseous & particulate) metals (Non- USEPA 29) (Sn, V)	USEPA Method 29	Envirolab in-house methods Metals-020/021/022	15%	* ^{‡‡}	√ ‡
Sulfuric acid mist and/or sulfur oxides	USEPA Method 8	Ektimo 235	16%	✓	✓ [†]
					111224

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

‡ Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on:

- 3 December 2024 in report 367360.
- 20 December 2024 in report 368941.

Specified metals are not listed in USEPA Method 29 and therefore, are not covered by NATA accreditation for sampling.

j Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

6 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

[†] Analysis performed by Ektimo. Results were reported to Ektimo on 21 November 2024 in report LV-006520.

^{††} Gravimetric analysis conducted at the Ektimo VIC laboratory.

Page: 30 of 34

7 Definitions

DECC

NA

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry basis

Approximately
 Less than
 Greater than
 Greater than or equal to

AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half of

the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that

cyclone and less than the D₅₀ of the preceding cyclone. Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or

changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

Not applicable

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (µm).
PM₂₅ Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (µm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the

chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical

calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference
The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements.

VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this

range

8 Appendices

Appendix A: Site Images

Image 1. Foreshore A

Image 2. Foreshore B

Image 3. Parageothite Dryer

Image 4. Cadmium Smelter Plant Scrubber Stack

Image 5. Copper Sulphate Crystalliser Plant Vent Stack

Image 6. Casting Ventilation 1 - V1

Image 7. Casting Ventilation 2 - V2

Image 8. Roaster Baghouse

Image 9. Anode Casting

Ektimo

Image 10. Zinc Plant 1 Baghouse - ZP1

Image 11. Zinc Plant 3 Baghouse - ZP3

Image 12. MZR Furnace Stack

Image 13. MZR Dross

Appendix B: Weather Observations

Hobart, Tasmania

November 2024 Daily Weather Observations

Date	Day	Ten	nps	Rain	Evap	Sun	Max	wind	gust		9:00 AM						3:00 PM						
		Min	Max				Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP		
		°C	°C	mm	mm	hours	km/h		local	°C •		8th	km/h		hPa	°C		8th	km/h		hPa		
1	Fr	7.6	15.5	0.2			WSW	54	14:45	12.2	49	8	WSW	24	1014	14.1	43	3	SW	33	1017		
2	Sa	3	22.1	0.2			Ν	54	22:35	10.7	59		NNW	15	1020	20.5	30		Ν	33	1011		
3	Su	10.3	20.8	0			Ν	76	4:24	16.6	42	2	WNW	33	998.7	19	40	8	W	33	1001		
4	Мо	11.2	20.6	0			WNW	50	13:26	12.6	60	7	NW	26	1008	19.9	35	2	WNW	28	1009		
5	Tu	5.6	21.1	0			SE	33	14:01	13.8	52		NW	19	1015	20.3	41		SSE	26	1011		
6	We	11.1	28.7	0			N	63	13:16	17.1	52	6	NNW	20	1004	27.6	32		Ν	28	995.7		
7	Th	10.5	20.1	0			SE	44	21:40	14.6	47		NW	19	1008	17.9	36	6	ESE	15	1005		
8	Fr	8.5	18	0			NW	74	8:52	15.9	39		NW	43	997.2	15.6	37	7	WNW	39	1002		
9	Sa	8.4	18.7	0			NW	50	11:42	13.5	48	4	NW	24	1013	16.5	42	8	WNW	22	1013		
10	Su	9.5	16.7	0			WNW	37	1:45	12.8	55	8	WSW	17	1021	15.5	43	4	SE	22	1022		
11	Мо	4.8	18.9	0			S	44	16:17	14.1	52		NW	15	1021	17.9	46		SE	24	1019		
12	Tu	6.5	23.1	0			SSW	46	20:12	14	68		WNW	11	1019	21.6	46		SSE	22	1013		
13	We	11.7	18.4	0.2			S	43	18:00	17.4	80		WNW	7	1007	14.9	86	8	SSE	20	1008		
14	Th	8.4	19.6	2.4			WNW	46	10:29	13.7	47	1	WNW	28	1017	17.8	35	7	WSW	13	1016		
15	Fr	6.5	17.3	0			NE	39	17:44	10.6	68	8	NW	4	1025	15.8	48	8	ENE	17	1023		
16	Sa	10.6	24.8	0			S	54	14:23	16.4	63	1	NW	9	1017	20.8	64	8	SSE	26	1014		
17	Su	14.4	25.6	0			WNW	59	13:14	20.8	66	2	N	24	998	14.6	74	7	NW	44	996.5		
18	Мо	10	17.7	4.4			WSW	65	14:36	14.3	49	3	WSW	17	1006	14.3	69	8	SSW	26	1012		
19	Tu	10.3	16.6	0			SSE	37	16:15	12.5	54	7	SSW	19	1024	15.4	51		SE	22	1022		
20	We	8.4	17.2	0			SSE	43	10:53	14.4	52	6	NW	9	1026	14.6	59	1	SSE	30	1027		
21	Th	11.3	21.7	0			SE	43	14:19	14.7	65	5	NE	9	1027	20.9	55		SE	31	1023		
22	Fr	9.8	21.7	0			S	31	14:42	15.7	73	5	WSW	6	1023	21.4	57		SSE	20	1019		
23	Sa	12.7	27.8	0			N	39	13:46	21.6	62	2	N	15	1015	26.9	32	4	NNW	24	1011		
24	Su	13.5	16.4	0			SE	33	6:13	14.1	89	8	SSE	22	1018	15.3	75	7	S	22	1018		
25	Мо	12.5	19.3	0			SSE	37	13:54	13.5	95	8	S	13	1017	16.7	70	7	SSE	30	1014		
26	Tu	13.5	22.2	0			SSE	37	16:01	16.5	79	8	NW	7	1011	20.9	67		SSE	20	1008		
27	We	16	19.7	0			S	30	20:48	18.5	80	8	N	11	1004	17.8	97	8	SE	11	1001		
28	Th	11.7	16	7.8			S	46	0:09	12.6	88	8	S	28	1019	15.2	63	7	S	24	1023		
29	Fr	11.5	18.4	2			Ε	33	12:13	14.9	67	8	ESE	9	1028	14.5	74	7	Е	17	1027		
30	Sa	10.6	19.8	0			NE	28	12:42	15.2	76	8	ESE	9	1021	17.7	76	8	NE	17	1016		
									Statisti	ics for Nov	vembei	2024											
Mean		10	20.1							14.8	62	5		17	1015	18.1	54	6		24	1013		
Lowest		3.0	15.5	0						10.6	39	1	NW	4	997.2	14.1	30	1	SE	11	995.7		
Highest		16.0	28.7	7.8			N	76		21.6	95	8	NW	43	1028	27.6	97	8	NW	44	1027		
Total				17.2																			

IDCJDW7062.202411 Prepared at 16:03 UTC on Thursday 2 January 2025

Site name: HOBART AIRPORT Site number: 0944250 Latitude: 42.84 °S Longitude: 147.50 °E Elevation: 7 m

December 2024 Daily Weather Observations

Date	Day	Ten	nps	Rain	Evap	Sun	Max	wind	gust		9:00 AM						3:00 PM							
		Min	Max				Dir	Spd	Time	Temp	RH	Cld	Dir	Spd	MSLP	Temp	RH	Cld	Dir	Spd	MSLP			
		°C	°C	mm	mm	hours	km/h		local	°C		8th	km/h		hPa	°C		8th	km/h		hPa			
1	Su	15.1	26.4	13			NNW	57	14:34	19.7	84	1	WNW	11	998.9	25.8	44	4	N	35	998.1			
2	Мо	15.7	27.5	0.4			W	54	15:30	20.1	58	8	NW	26	998.8	25.9	39		W	26	999.4			
3	Tu	13.3	26.2	3.2			W	52	18:03	16.2	95	8	NNW	6	1001	23.6	68	8	NNW	19	995.2			
4	We	11.9	23.6	4.4			W	35	23:11	16.1	52		WNW	22	1014	22.7	36		SE	20	1014			
5	Th	12.3	27.5	0.2			S	41	15:53	19.9	64	6	NNW	11	1018	25.2	51	8	SE	20	1014			
6	Fr	12.4	20.3	0			S	39	12:24	19.1	67	8	SE	7	1015	17.8	76	5	S	28	1016			
7	Sa	14	20.9	23			W	59	22:05	14.7	99	8	SW	7	1005	20.1	76	4	NNW	9	1000			
8	Su	11	19	13.4			W	61	9:16	13.6	53	1	WNW	37	1003	18.8	45	8	WNW	35	1004			
9	Мо	12.6	20.2	0			NW	54	15:14	15.8	56	1	NW	30	1009	18.7	43	6	NW	33	1008			
10	Tu	12.8	19.5	0			NW	43	8:08	17.3	56	1	WNW	24	1008	16.6	48	8	WSW	19	1008			
11	We	12.5	20.7	0			NW	65	10:26	14.8	54	6	NW	28	1003	19.5	50	3	NW	48	995.8			
12	Th	14.7	20.5	0			WNW	65	1:25	17.5	51	8	WNW	17	998.9	16.4	65	8	SE	20	999.5			
13	Fr	14.2	19.2	0			W	59	9:30	14.7	70	8	W	26	1001	18.1	49	8	SSW	20	1004			
14	Sa	7.5	21.9	0.8			WNW	41	11:25	14.4	56	8	NW	19	1010	18.8	47	6	SE	20	1008			
15	Su	9.3	22.7	0			SSE	39	12:54	16.4	60		NNE	7	1014	20.9	58		SE	28	1013			
16	Мо	15.8	31.6	0			NNW	52	14:14	20.3	57	8	NNW	24	1008	30.8	38		Ν	28	999.9			
17	Tu	14.4	21	8.6			NW	83	12:11	17.7	51		WNW	39	999.5	20.2	46	3	W	33	1000			
18	We	12.1	20.6	0			SSE	44	15:58	16.1	49		WSW	17	1019	17.6	65		SSE	31	1021			
19	Th	13.1	20.4	0			SSE	31	15:05	15.1	68	8	ENE	7	1023	19.3	56		SSE	24	1020			
20	Fr	9.2	25.6	0			NE	31	14:33	17.4	66		NE	7	1014	25.1	46		NE	13	1008			
21	Sa	14.7	19.7	3.4			S	61	16:19	18.1	56		SSW	22	1009	17.7	66	2	SSE	39	1010			
22	Su	7.4	21.3	0			SW	50	17:46	13.6	62	3	NNE	9	1009	20.2	53	2	SE	26	1001			
23	Мо	10.8	17.4	19			SSW	48	14:21	13.5	56	8	WSW	22	1002	17	57	1	SSW	28	1001			
24	Tu	11	23.6	0.6			SW	44	6:10	15.6	48	5	SSW	15	1009	19.6	58	7	ESE	7	1008			
25	We	8.2	21.7	0			NW	28	23:18	17.3	61	6	WSW	7	1013	19.6	56	5	SE	22	1013			
26	Th	13.8	28.3	0.2			N	44	18:08	17.6	75	7	NNW	9	1006	25.8	50	1	S	20	998.4			
27	Fr	13.3	20.5	1.4			NW	72	6:11	16.9	55	8	W	37	991.2	19	34	5	W	39	998			
28	Sa	12.9	20.7	0			NW	48	1:53	15.6	61	8	NNW	17	1001	19.8	40	5	W	28	1001			
29	Su	12.9	24.1	0.4			W	56	10:01	17.7	54	8	NNW	13	1006	23.1	36		W	30	1009			
30	Мо	11.8	25	0			NW	30	12:05	18.1	57		N	13	1015	21.9	51	8	SE	17	1011			
31	Tu	10	21.8	0			SE	37	15:03	17.3	53	1	NE	9	1016	21	44		SSE	24	1014			
									Statisti	cs for De	cembe	r 2024												
Mean		12.3	22.6							16.7	61	5		17	1008	20.9	51	5		25	1006			
Lowest		7.4	17.4	0						13.5	48	1	NNW	6	991.2	16.4	34	1	ESE	7	995.2			
Highest		15.8	31.6	23			NW	83		20.3	99	8	WNW	39	1023	30.8	76	8	NW	48	1021			
Total				92.0																				

IDCJDW7062.202412 Prepared at 13:03 UTC on Tuesday 7 January 2025

Site name: HOBART AIRPORT Site number: 0944250 Latitude: 42.84 °S Longitude: 147.50 °E Elevation: 7 m

Experts in air quality, odour and emission monitoring.

Melbourne

(Head Office) 26 Redland Dr Mitcham, VIC 3132

Wollongong

1/10 Doyle Ave Unanderra NSW 2526

Brisbane

3/109 Riverside Pl Morningside QLD 4170

Perth

52 Cooper Rd Cockburn Central WA 6164

1300 364 005

ektimo.com.au